RESUMEN
Chromosome 1p36 deletion syndrome (1p36DS) is one of the most common terminal deletion syndromes (incidence between 1/5000 and 1/10,000 live births in the American population), due to a heterozygous deletion of part of the short arm of chromosome 1. The 1p36DS is characterized by typical craniofacial features, developmental delay/intellectual disability, hypotonia, epilepsy, cardiomyopathy/congenital heart defect, brain abnormalities, hearing loss, eyes/vision problem, and short stature. The aim of our study was to (1) evaluate the incidence of the 1p36DS in the French population compared to 22q11.2 deletion syndrome and trisomy 21; (2) review the postnatal phenotype related to microarray data, compared to previously publish prenatal data. Thanks to a collaboration with the ACLF (Association des Cytogénéticiens de Langue Française), we have collected data of 86 patients constituting, to the best of our knowledge, the second-largest cohort of 1p36DS patients in the literature. We estimated an average of at least 10 cases per year in France. 1p36DS seems to be much less frequent than 22q11.2 deletion syndrome and trisomy 21. Patients presented mainly dysmorphism, microcephaly, developmental delay/intellectual disability, hypotonia, epilepsy, brain malformations, behavioral disorders, cardiomyopathy, or cardiovascular malformations and, pre and/or postnatal growth retardation. Cardiac abnormalities, brain malformations, and epilepsy were more frequent in distal deletions, whereas microcephaly was more common in proximal deletions. Mapping and genotype-phenotype correlation allowed us to identify four critical regions responsible for intellectual disability. This study highlights some phenotypic variability, according to the deletion position, and helps to refine the phenotype of 1p36DS, allowing improved management and follow-up of patients.
Asunto(s)
Síndrome de DiGeorge , Síndrome de Down , Epilepsia , Discapacidad Intelectual , Microcefalia , Humanos , Cromosomas Humanos Par 1 , Hipotonía Muscular , Deleción Cromosómica , FenotipoRESUMEN
Inverted duplication deletion 8p [invdupdel(8p)] is a complex and rare chromosomal rearrangement that combines a distal deletion and an inverted interstitial duplication of the short arm of chromosome 8. Carrier patients usually have developmental delay and intellectual disability (ID), associated with various cerebral and extra-cerebral malformations. Invdupdel(8p) is the most common recurrent chromosomal rearrangement in ID patients with anomalies of the corpus callosum (AnCC). Only a minority of invdupdel(8p) cases reported in the literature to date had both brain cerebral imaging and chromosomal microarray (CMA) with precise breakpoints of the rearrangements, making genotype-phenotype correlation studies for AnCC difficult. In this study, we report the clinical, radiological, and molecular data from 36 new invdupdel(8p) cases including three fetuses and five individuals from the same family, with breakpoints characterized by CMA. Among those, 97% (n = 32/33) of patients presented with mild to severe developmental delay/ID and 34% had seizures with mean age of onset of 3.9 years (2 months-9 years). Moreover, out of the 24 patients with brain MRI and 3 fetuses with neuropathology analysis, 63% (n = 17/27) had AnCC. We review additional data from 99 previously published patients with invdupdel(8p) and compare data of 17 patients from the literature with both CMA analysis and brain imaging to refine genotype-phenotype correlations for AnCC. This led us to refine a region of 5.1 Mb common to duplications of patients with AnCC and discuss potential candidate genes within this region.
Asunto(s)
Discapacidad Intelectual , Leucoencefalopatías , Deleción Cromosómica , Inversión Cromosómica , Cromosomas Humanos Par 8 , Cuerpo Calloso/diagnóstico por imagen , Estudios de Asociación Genética , Humanos , Discapacidad Intelectual/diagnóstico por imagen , Discapacidad Intelectual/genética , Leucoencefalopatías/genética , Fenotipo , TrisomíaRESUMEN
RESEARCH QUESTION: Should whole-genome investigations be considered systematically before a complex chromosomal abnormality preimplantation genetic testing for structural chromosomal rearrangements (PGT-SR) management is carried out using conventional cytogenetic techniques? DESIGN: A male carrying a putative rare interchromosomal reciprocal insertion (IRI) 46,XY,ins(14;?)(q11;?).ish der(14)ins(14;22)(q11.2;q11.2q11.2)(xcp14+,xcp22+,N25+,3'TRA/D+),der(22)ins(22;14)(q11.2;q11.2q11.2)(xcp22+,xcp14+,N25-,5'TRA/D+), and his partner were referred to our centre for preimplantation genetic testing analysis after three spontaneous miscarriages. Whole-genome sequencing was used to distinguish between the proposed IRI and an alternative explanation of reciprocal translocation. Fluorescence in-situ hybridization was used to detect all chromosome segments involved in this chromosomal rearrangement, to identify transferable normal and balanced embryos. RESULTS: Whole-genome sequencing allowed the determination of the number of chromosomal breakpoints involved in chromosomal rearrangement between chromosomes 14 and 22. Finally, only two breakpoints were identified instead of four in IRI rearrangements, which suggests a reciprocal translocation rearrangement. A probe strategy was established to highlight all chromosomal imbalances, whether IRI or reciprocal translocation, and preimplantation genetic testing cycles were achieved. CONCLUSION: Conventional cytogenetic techniques are not capable of identifying all complex chromosomal rearrangements, especially those involving centromeric regions and short arms of acrocentric chromosomes. The advent of new sequencing technologies has allowed for a better appreciation of genome complexity. In this study, whole-genome analysis provided additional information to explain the occurrence of genomic events and confirmed that the initial diagnosis of IRI identified by conventional cytogenetic techniques was, in fact, a simple reciprocal translocation. A reliable PGT-SR strategy was proposed for this couple to achieve their parental project.
Asunto(s)
Diagnóstico Preimplantación , Aberraciones Cromosómicas , Femenino , Pruebas Genéticas/métodos , Humanos , Hibridación Fluorescente in Situ , Masculino , Embarazo , Diagnóstico Preimplantación/métodos , Translocación GenéticaRESUMEN
Globozoospermia is a rare phenotype of primary male infertility inducing the production of round-headed spermatozoa without acrosome. Anomalies of DPY19L2 account for 50-70% of all cases and the entire deletion of the gene is by far the most frequent defect identified. Here, we present a large cohort of 69 patients with 20-100% of globozoospermia. Genetic analyses including multiplex ligation-dependent probe amplification, Sanger sequencing and whole-exome sequencing identified 25 subjects with a homozygous DPY19L2 deletion (36%) and 14 carrying other DPY19L2 defects (20%). Overall, 11 deleterious single-nucleotide variants were identified including eight novel and three already published mutations. Patients with a higher rate of round-headed spermatozoa were more often diagnosed and had a higher proportion of loss of function anomalies, highlighting a good genotype phenotype correlation. No gene defects were identified in patients carrying < 50% of globozoospermia while diagnosis efficiency rose to 77% for patients with > 50% of globozoospermia. In addition, results from whole-exome sequencing were scrutinized for 23 patients with a DPY19L2 negative diagnosis, searching for deleterious variants in the nine other genes described to be associated with globozoospermia in human (C2CD6, C7orf61, CCDC62, CCIN, DNAH17, GGN, PICK1, SPATA16, and ZPBP1). Only one homozygous novel truncating variant was identified in the GGN gene in one patient, confirming the association of GGN with globozoospermia. In view of these results, we propose a novel diagnostic strategy focusing on patients with at least 50% of globozoospermia and based on a classical qualitative PCR to detect DPY19L2 homozygous deletions. In the absence of the latter, we recommend to perform whole-exome sequencing to search for defects in DPY19L2 as well as in the other previously described candidate genes.
Asunto(s)
Infertilidad Masculina/genética , Proteínas de la Membrana/genética , Teratozoospermia/genética , Hormonas Testiculares/genética , Estudios de Cohortes , Eliminación de Gen , Estudios de Asociación Genética/métodos , Pruebas Genéticas/métodos , Homocigoto , Humanos , Masculino , Mutación/genética , Polimorfismo de Nucleótido Simple/genética , Espermatozoides/anomalías , Secuenciación del Exoma/métodosRESUMEN
The nuclear factor I (NFI) family of transcription factors play an important role in normal development of multiple organs. Three NFI family members are highly expressed in the brain, and deletions or sequence variants in two of these, NFIA and NFIX, have been associated with intellectual disability (ID) and brain malformations. NFIB, however, has not previously been implicated in human disease. Here, we present a cohort of 18 individuals with mild ID and behavioral issues who are haploinsufficient for NFIB. Ten individuals harbored overlapping microdeletions of the chromosomal 9p23-p22.2 region, ranging in size from 225 kb to 4.3 Mb. Five additional subjects had point sequence variations creating a premature termination codon, and three subjects harbored single-nucleotide variations resulting in an inactive protein as determined using an in vitro reporter assay. All individuals presented with additional variable neurodevelopmental phenotypes, including muscular hypotonia, motor and speech delay, attention deficit disorder, autism spectrum disorder, and behavioral abnormalities. While structural brain anomalies, including dysgenesis of corpus callosum, were variable, individuals most frequently presented with macrocephaly. To determine whether macrocephaly could be a functional consequence of NFIB disruption, we analyzed a cortex-specific Nfib conditional knockout mouse model, which is postnatally viable. Utilizing magnetic resonance imaging and histology, we demonstrate that Nfib conditional knockout mice have enlargement of the cerebral cortex but preservation of overall brain structure and interhemispheric connectivity. Based on our findings, we propose that haploinsufficiency of NFIB causes ID with macrocephaly.
Asunto(s)
Haploinsuficiencia/genética , Discapacidad Intelectual/genética , Megalencefalia/genética , Factores de Transcripción NFI/genética , Adolescente , Adulto , Animales , Corteza Cerebral/patología , Niño , Preescolar , Codón sin Sentido/genética , Estudios de Cohortes , Cuerpo Calloso/patología , Femenino , Humanos , Masculino , Ratones , Ratones Noqueados , Polimorfismo de Nucleótido Simple/genética , Adulto JovenRESUMEN
BACKGROUND: The 15q11.2 deletion is frequently identified in the neurodevelopmental clinic. Case-control studies have associated the 15q11.2 deletion with neurodevelopmental disorders, and clinical case series have attempted to delineate a microdeletion syndrome with considerable phenotypic variability. The literature on this deletion is extensive and confusing, which is a challenge for genetic counselling. The aim of this study was to estimate the effect size of the 15q11.2 deletion and quantify its contribution to neurodevelopmental disorders. METHODS: We performed meta-analyses on new and previously published case-control studies and used statistical models trained in unselected populations with cognitive assessments. We used new (n=241) and previously published (n=150) data from a clinically referred group of deletion carriers. 15q11.2 duplications (new n=179 and previously published n=35) were used as a neutral control variant. RESULTS: The deletion decreases IQ by 4.3 points. The estimated ORs and respective frequencies in deletion carriers for intellectual disabilities, schizophrenia and epilepsy are 1.7 (3.4%), 1.5 (2%) and 3.1 (2.1%), respectively. There is no increased risk for heart malformations and autism. In the clinically referred group, the frequency and nature of symptoms in deletions are not different from those observed in carriers of the 15q11.2 duplication suggesting that most of the reported symptoms are due to ascertainment bias. CONCLUSIONS: We recommend that the deletion should be classified as 'pathogenic of mild effect size'. Since it explains only a small proportion of the phenotypic variance in carriers, it is not worth discussing in the developmental clinic or in a prenatal setting.
Asunto(s)
Trastorno Autístico/genética , Variaciones en el Número de Copia de ADN , Epilepsia/genética , Cardiopatías/genética , Discapacidad Intelectual/genética , Trastornos del Neurodesarrollo/genética , Estudios de Casos y Controles , Estudios de Cohortes , Femenino , Cardiopatías/congénito , Humanos , Mutación con Pérdida de Función , Masculino , Eliminación de SecuenciaRESUMEN
OBJECTIVES: Congenital heart defects (CHDs) may be isolated or associated with other malformations. The use of chromosome microarray (CMA) can increase the genetic diagnostic yield for CHDs by between 4% and 10%. The objective of this study was to evaluate the value of CMA after the prenatal diagnosis of an isolated CHD. METHODS: In a retrospective, nationwide study performed in France, we collected data on all cases of isolated CHD that had been explored using CMAs in 2015. RESULTS: A total of 239 fetuses were included and 33 copy number variations (CNVs) were reported; 19 were considered to be pathogenic, six were variants of unknown significance, and eight were benign variants. The anomaly detection rate was 10.4% overall but ranged from 0% to 16.7% as a function of the isolated CHD in question. The known CNVs were 22q11.21 deletions (n = 10), 22q11.21 duplications (n = 2), 8p23 deletions (n = 2), an Alagille syndrome (n = 1), and a Kleefstra syndrome (n = 1). CONCLUSION: The additional diagnostic yield was clinically significant (3.1%), even when anomalies in the 22q11.21 region were not taken into account. Hence, patients with a suspected isolated CHD and a normal karyotype must be screened for chromosome anomalies other than 22q11.21 duplications and deletions.
Asunto(s)
Pruebas Genéticas/métodos , Cardiopatías Congénitas/genética , Análisis por Micromatrices/métodos , Diagnóstico Prenatal/métodos , Adulto , Aberraciones Cromosómicas , Cromosomas/química , Cromosomas/genética , Hibridación Genómica Comparativa/métodos , Variaciones en el Número de Copia de ADN , Femenino , Feto/química , Feto/metabolismo , Francia , Cardiopatías Congénitas/diagnóstico , Humanos , Cariotipificación , Embarazo , Estudios Retrospectivos , SíndromeRESUMEN
OBJECTIVE: Uniparental disomy (UPD) testing is currently recommended during pregnancy in fetuses carrying a balanced Robertsonian translocation (ROB) involving chromosome 14 or 15, both chromosomes containing imprinted genes. The overall risk that such a fetus presents a UPD has been previously estimated to be around ~0.6-0.8%. However, because UPD are rare events and this estimate has been calculated from a number of studies of limited size, we have reevaluated the risk of UPD in fetuses for whom one of the parents was known to carry a nonhomologous ROB (NHROB). METHOD: We focused our multicentric study on NHROB involving chromosome 14 and/or 15. A total of 1747 UPD testing were performed in fetuses during pregnancy for the presence of UPD(14) and/or UPD(15). RESULT: All fetuses were negative except one with a UPD(14) associated with a maternally inherited rob(13;14). CONCLUSION: Considering these data, the risk of UPD following prenatal diagnosis of an inherited ROB involving chromosome 14 and/or 15 could be estimated to be around 0.06%, far less than the previous estimation. Importantly, the risk of miscarriage following an invasive prenatal sampling is higher than the risk of UPD. Therefore, we do not recommend prenatal testing for UPD for these pregnancies and parents should be reassured.
Asunto(s)
Cromosomas Humanos Par 14 , Cromosomas Humanos Par 15 , Diagnóstico Prenatal , Translocación Genética , Disomía Uniparental , Adulto , Femenino , Humanos , Masculino , Embarazo , Estudios Retrospectivos , Medición de RiesgoRESUMEN
BACKGROUND: Analysis of cell-free fetal DNA in maternal plasma is very promising for early diagnosis of monogenic diseases. However, it has been limited by the need to set up patient- or disease-specific custom-made approaches. Here we propose a universal test based on fluorescent multiplex PCR and size fragment analysis for an indirect diagnosis of cystic fibrosis (CF). METHODS: The test, based on haplotyping, includes nine intra- and extragenic short tandem repeats of the CFTR locus, the coamplification of p.Phe508del (the most frequent mutation in CF patients worldwide), and a specific SRY sequence. The assay is able to determine the inherited paternal allele. RESULTS: Our simple approach was successfully applied to 30 couples and provided clear results from the maternal plasma. The mean rate of informative markers was sufficient to propose it for use in indirect diagnosis. CONCLUSIONS: This noninvasive prenatal diagnosis test, focused on indirect diagnosis of CF, offers many advantages over current methods: it is simple, rapid, and cost-effective. It allows for the testing of a large number of couples with high risk of CF, whatever the familial mutation of the CFTR gene. It provides an alternative method to reduce the number of invasive tests.
Asunto(s)
Ácidos Nucleicos Libres de Células/química , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Fibrosis Quística/genética , Diagnóstico Prenatal/métodos , Regulador de Conductancia de Transmembrana de Fibrosis Quística/química , Haplotipos , Humanos , Reacción en Cadena de la Polimerasa Multiplex/métodosRESUMEN
Hydatidiform mole is an aberrant human pregnancy characterized by early embryonic arrest and excessive trophoblastic proliferation. Recurrent hydatidiform moles are defined by the occurrence of at least two hydatidiform moles in the same patient. Fifty to eighty percent of patients with recurrent hydatidiform moles have biallelic pathogenic variants in NLRP7 or KHDC3L. However, in the remaining patients, the genotypic types of the moles are unknown. We characterized 80 new hydatidiform mole tissues, 57 of which were from patients with no mutations in the known genes, and we reviewed the genotypes of a total of 123 molar tissues. We also reviewed mutation analysis in 113 patients with recurrent hydatidiform moles. While all hydatidiform moles from patients with biallelic NLRP7 or KHDC3L mutations are diploid biparental, we demonstrate that those from patients without mutations are highly heterogeneous and only a small minority of them are diploid biparental (8%). The other mechanisms that were found to recur in patients without mutations are diploid androgenetic monospermic (24%) and triploid dispermic (32%); the remaining hydatidiform moles were misdiagnosed as moles due to errors in the analyses and/or their unusual mechanisms. We compared three parameters of genetic susceptibility in patients with and without mutations and show that patients without mutations are mostly from non-familial cases, have fewer reproductive losses, and more live births. Our data demonstrate that patients with recurrent hydatidiform moles and no mutations in the known genes are, in general, different from those with mutations; they have a milder genetic susceptibility and/or a multifactorial etiology underlying their recurrent hydatidiform moles. Categorizing these patients according to the genotypic types of their recurrent hydatidiform moles may facilitate the identification of novel genes for this entity.
Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Mola Hidatiforme/genética , Neoplasias Primarias Secundarias/genética , Proteínas/genética , Neoplasias Uterinas/genética , Análisis Mutacional de ADN , Femenino , Predisposición Genética a la Enfermedad , Genotipo , Humanos , EmbarazoRESUMEN
OBJECTIVES: Inflammasomes are multiprotein complexes that sense pathogens and trigger biological mechanisms to control infection. Nucleotide-binding oligomerisation domain-like receptor (NLR) containing a PYRIN domain 1 (NLRP1), NLRP3 and NLRC4 plays a key role in this innate immune system by directly assembling in inflammasomes and regulating inflammation. Mutations in NLRP3 and NLRC4 are linked to hereditary autoinflammatory diseases, whereas polymorphisms in NLRP1 are associated with autoimmune disorders such as vitiligo and rheumatoid arthritis. Whether human NLRP1 mutation is associated with autoinflammation remains to be determined. METHODS: To search for novel genes involved in systemic juvenile idiopathic arthritis, we performed homozygosity mapping and exome sequencing to identify causative genes. Immunoassays were performed with blood samples from patients. RESULTS: We identified a novel disease in three patients from two unrelated families presenting diffuse skin dyskeratosis, autoinflammation, autoimmunity, arthritis and high transitional B-cell level. Molecular screening revealed a non-synonymous homozygous mutation in NLRP1 (c.2176C>T; p.Arg726Trp) in two cousins born of related parents originating from Algeria and a de novo heterozygous mutation (c.3641C>G, p.Pro1214Arg) in a girl of Dutch origin. The three patients showed elevated systemic levels of caspase-1 and interleukin 18, which suggested involvement of NLRP1 inflammasome. CONCLUSIONS: We demonstrate the responsibility of human NLRP1 in a novel autoinflammatory disorder that we propose to call NAIAD for NLRP1-associated autoinflammation with arthritis and dyskeratosis. This disease could be a novel autoimmuno-inflammatory disease combining autoinflammatory and autoimmune features. Our data, combined with that in the literature, highlight the pleomorphic role of NLRP1 in inflammation and immunity. TRIAL REGISTRATION NUMBER: NCT02067962; Results.
Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Reguladoras de la Apoptosis/genética , Artritis Juvenil/genética , Enfermedades Autoinmunes/genética , Enfermedades Autoinflamatorias Hereditarias/genética , Enfermedades de la Piel/genética , Adolescente , Argelia , Artritis Juvenil/complicaciones , Artritis Juvenil/inmunología , Enfermedades Autoinmunes/complicaciones , Enfermedades Autoinmunes/inmunología , Linfocitos B/inmunología , Población Negra , Caspasa 1/inmunología , Niño , Consanguinidad , Femenino , Enfermedades Autoinflamatorias Hereditarias/complicaciones , Enfermedades Autoinflamatorias Hereditarias/inmunología , Homocigoto , Humanos , Interleucina-18/inmunología , Masculino , Mutación , Proteínas NLR , Países Bajos , Células Precursoras de Linfocitos B/inmunología , Enfermedades de la Piel/complicaciones , Enfermedades de la Piel/inmunología , Síndrome , Población BlancaRESUMEN
PURPOSE: Treacher Collins/Franceschetti syndrome (TCS; OMIM 154500) is a disorder of craniofacial development belonging to the heterogeneous group of mandibulofacial dysostoses. TCS is classically characterized by bilateral mandibular and malar hypoplasia, downward-slanting palpebral fissures, and microtia. To date, three genes have been identified in TCS:,TCOF1, POLR1D, and POLR1C. METHODS: We report a clinical and extensive molecular study, including TCOF1, POLR1D, POLR1C, and EFTUD2 genes, in a series of 146 patients with TCS. Phenotype-genotype correlations were investigated for 19 clinical features, between TCOF1 and POLR1D, and the type of mutation or its localization in the TCOF1 gene. RESULTS: We identified 92/146 patients (63%) with a molecular anomaly within TCOF1, 9/146 (6%) within POLR1D, and none within POLR1C. Among the atypical negative patients (with intellectual disability and/or microcephaly), we identified four patients carrying a mutation in EFTUD2 and two patients with 5q32 deletion encompassing TCOF1 and CAMK2A in particular. Congenital cardiac defects occurred more frequently among patients with TCOF1 mutation (7/92, 8%) than reported in the literature. CONCLUSION: Even though TCOF1 and POLR1D were associated with extreme clinical variability, we found no phenotype-genotype correlation. In cases with a typical phenotype of TCS, 6/146 (4%) remained with an unidentified molecular defect.
Asunto(s)
ARN Polimerasas Dirigidas por ADN/genética , Disostosis Mandibulofacial/genética , Proteínas Nucleares/genética , Fosfoproteínas/genética , Adolescente , Adulto , Secuencia de Aminoácidos , Secuencia de Bases , Niño , Femenino , Estudios de Asociación Genética , Humanos , Masculino , Disostosis Mandibulofacial/diagnóstico , Microcefalia/genética , Persona de Mediana Edad , Datos de Secuencia Molecular , Mutación , Factores de Elongación de Péptidos/genética , Ribonucleoproteína Nuclear Pequeña U5/genética , Eliminación de Secuencia , Adulto JovenRESUMEN
Intellectual disability (ID) is a frequent feature but is highly clinically and genetically heterogeneous. The establishment of the precise diagnosis in patients with ID is challenging due to this heterogeneity but crucial for genetic counseling and appropriate care for the patients. Among the etiologies of patients with ID, apparently balanced de novo rearrangements represent 0.6%. Several mechanisms explain the ID in patients with apparently balanced de novo rearrangement. Among them, disruption of a disease gene at the breakpoint, is frequently evoked. In this context, technologies recently developed are used to characterize precisely such chromosomal rearrangements. Here, we report the case of a boy with ID, facial features and autistic behavior who is carrying a de novo balanced reciprocal translocation t(3;7)(q11.2;q11.22)dn. Using microarray analysis, array painting (AP) technology combined with molecular study, we have identified the interruption of the autism susceptibility candidate 2 gene (AUTS2) and EPH receptor A6 gene (EPHA6). We consider that the disruption of AUTS2 explains the phenotype of the patient; the exact role of EPHA6 in human pathology is not well defined. Based on the observation of recurrent germinal and somatic translocations involving AUTS2 and the molecular environment content, we put forward the hypothesis that the likely chromosomal mechanism responsible for the translocation could be due either to replicative stress or to recombination-based mechanisms.
Asunto(s)
Discapacidad Intelectual/genética , Trastornos del Neurodesarrollo/genética , Proteínas/genética , Receptor EphA6/genética , Translocación Genética , Secuencia de Bases , Niño , Pintura Cromosómica/métodos , Cromosomas Humanos Par 3 , Cromosomas Humanos Par 7 , Proteínas del Citoesqueleto , Femenino , Humanos , Masculino , Datos de Secuencia Molecular , Embarazo , Factores de TranscripciónRESUMEN
Mosaic variegated aneuploidy (MVA) is a rare autosomal recessive disorder characterized by constitutional aneuploidies. Mutations in BUB1B and CEP57 genes, which are involved in mitotic spindle and microtubule stabilization, respectively, are responsible for a subset of patients with MVA. To date, CEP57 mutations have been reported only in four probands. We report on a girl with this disorder due to c.915-925dup11 mutation in CEP57, which predicts p.Leu309ProfsX9 and review the literature in order to facilitate genotype-phenotype correlation. Rhizomelic shortening of the upper limbs, skull anomalies with conserved head circumference, and absence of tumor development could be features suggesting a need for molecular screening of the CEP57 gene in patients with this disorder.
Asunto(s)
Trastornos de los Cromosomas/genética , Proteínas Asociadas a Microtúbulos/genética , Mutación , Proteínas Nucleares/genética , Aneuploidia , Preescolar , Trastornos de los Cromosomas/diagnóstico , Consanguinidad , Análisis Mutacional de ADN , Facies , Femenino , Humanos , Mosaicismo , Linaje , FenotipoRESUMEN
The recent discovery of a new kind of massive chromosomal rearrangement in different cancers, named "chromothripsis" (chromo for chromosome, thripsis for shattering) has questioned the established models for a progressive development of tumors. Indeed, this phenomenon, which is characterized by the shattering of one (or a few) chromosome segments followed by a random reassembly of the fragments generated, occurs during one unique cellular event. The same phenomenon was identified in constitutional genetics in patients with various developmental pathologies, indicating that chromothripsis also occurs at the germ cell level. Diverse situations can cause chromothripsis (radiations, telomere erosion, abortive apoptosis, etc.), and two express "repair routes" are used by the cell to chaotically reorganise the chromosomal regions concerned: non-homologous end-joining and repair by replicative stress. The in-depth analysis of the DNA sequences involved in the regions of chromothripsis leads to a better understanding of the molecular basis of chromothripsis and also helps to better apprehend its unexpected role in the development of constitutional pathologies and the progression of cancers.
Asunto(s)
Aberraciones Cromosómicas , Fragmentación del ADN , Apoptosis/genética , Análisis Citogenético , Reparación del ADN por Unión de Extremidades/fisiología , Humanos , Neoplasias/genéticaRESUMEN
Complex chromosomal rearrangements (CCR) include diverse structural anomalies leading to complex karyotypes which are difficult to interpret. Although karyotype analysis has been able to identify a large number of these rearrangements and to distinguish de novo and familial events, it is the advent of molecular cytogenetic and sequence analysis techniques which have led to an understanding of the molecular mechanisms underlying the formation of CCR. The diversity and high level of complexity inherent to CCR raises questions about their origin, their ties to chromosome instability and their impact in pathology. Today it is possible to precisely characterize CCR and to offer carriers sophisticated diagnostic techniques, such as preimplantation diagnosis. However, the meiotic segregation of these rearrangements remains very complex.
Asunto(s)
Inestabilidad Cromosómica/fisiología , Aberraciones Cromosómicas , Translocación Genética/fisiología , Animales , Aberraciones Cromosómicas/clasificación , Aberraciones Cromosómicas/estadística & datos numéricos , Análisis Citogenético/métodos , Análisis Citogenético/tendencias , Fertilidad/genética , HumanosRESUMEN
Single-gene copy number variants (CNVs) limited to placenta although rarely identified may have clinical implications. We describe a pregnant woman referred for chorionic villus sampling due to increased fetal nuchal translucency. Incident intragenic deletion of Duchenne muscular dystrophy (DMD) gene, affecting exons 56 and 57, was identified in a male fetus in ~23-30% of placental cells by chromosomal microarray and confirmed using multiplex ligation-dependent probe amplification (MLPA). Rapid aneuploidy testing showed normal results and the deletion was not detected in the mother. Subsequent analyses on amniotic cells yielded a normal DMD gene result, corroborating the confined placental nature of the mosaicism. Hence, this report emphasizes the importance of conducting amniocentesis following detection of mosaicism for single gene CNVs on chorionic villi, in order to preclude confined placental mosaicism (CPM). As far as we know, this report marks only the second documented situation of CPM involving an intragenic DMD deletion.
RESUMEN
Introduction: Accurate identification and characterization of Large Genomic Rearrangements (LGR), especially duplications, are crucial for precise diagnosis and risk assessment. In this report, we characterized an intragenic duplication breakpoint of PALB2 to determine its pathogenicity significance. Methods: A 52-year-old female with triple-negative breast cancer was diagnosed with a novel PALB2 LGR. An efficient and accurate methodology was applied, combining long-read sequencing and transcript analysis for the rapid characterization of the duplication. Results: Duplication of exons 5 and 6 of PALB2 was validated by transcript analysis. Long-read sequencing enabled the localization of breakpoints within Alu elements, providing insights into the mechanism of duplication via non-allelic homologous recombination. Conclusion: Using our combined methodology, we reclassified the PALB2 duplication as a pathogenic variant. This reclassification suggests a possible causative link between this specific genetic alteration and the aggressive phenotype of the patient.
RESUMEN
Titin protein is responsible for muscle elasticity. The TTN gene, composed of 364 exons, is subjected to extensive alternative splicing and leads to different isoforms expressed in skeletal and cardiac muscle. Variants in TTN are responsible for myopathies with a wide phenotypic spectrum and autosomal dominant or recessive transmission. The I-band coding domain, highly subject to alternative splicing, contains a three-zone block of repeated sequences with 99% homology. Sequencing and localization of variants in these areas are complex when using short-reads sequencing, a second-generation sequencing technique. We have implemented a protocol based on the third-generation sequencing technology (long-reads sequencing). This new method allows us to localize variants in these repeated areas to improve the diagnosis of TTN-related myopathies and offer the analysis of relatives in postnatal or in prenatal screening.
Asunto(s)
Enfermedades Musculares , Empalme Alternativo/genética , Conectina/genética , Exones/genética , Humanos , Enfermedades Musculares/genética , Isoformas de Proteínas/genéticaRESUMEN
BACKGROUND: The mode of evolution of the highly homogeneous Higher-Order-Repeat-containing alpha satellite arrays is still subject to discussion. This is also true of the CENP-A associated repeats where the centromere is formed. RESULTS: In this paper, we show that the molecular mechanisms by which these arrays evolve are identical in multiple chromosomes: i) accumulation of crossovers that homogenise and expand the arrays into different domains and subdomains that are mostly unshared between homologues and ii) sporadic mutations and conversion events that simultaneously differentiate them from one another. Individual arrays are affected by these mechanisms to different extents that presumably increase with time. Repeats associated with CENP-A, where the centromere is formed, are subjected to the same evolutionary mechanisms, but constitute minor subsets that exhibit subtle sequence differences from those of the bulk repeats. While the DNA sequence per se is not essential for centromere localisation along an array, it appears that certain sequences can be selected against. On chromosomes 1 and 19, which are more affected by the above evolutionary mechanisms than are chromosomes 21 and 5, CENP-A associated repeats were also recovered from a second homogeneous array present on each chromosome. This could be a way for chromosomes to sustain mitosis and meiosis when the normal centromere locus is ineluctably undermined by the above mechanisms. CONCLUSION: We discuss, in light of these observations, possible scenarios for the normal evolutionary fates of human centromeric regions.