Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Philos Trans A Math Phys Eng Sci ; 382(2282): 20230269, 2024 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-39307161

RESUMEN

Sustainable methanol formation from CO2/H2 is potentially a key process in the post-fossil chemical industry. In this study, Hf- and Zr-based metal-organic framework (MOF) materials with UiO-67 topology, functionalized with Pt nanoparticles, have been tested for CO2 hydrogenation at 30 bar and 170-240°C. The highest methanol formation rate, 14 molmethanol molPt-1 h-1, was obtained over a Hf-based catalyst, compared with the maximum of 6.2 molmethanol molPt-1 h-1 for the best Zr-based analogue. However, changing the node metal did not significantly affect product distribution or apparent activation energy for methanol formation (44-52 kJ mol-1), strongly indicating that the higher activity of the Hf-based analogues is associated with a higher number of active sites. Both catalysts showed stable catalytic performance during testing under kinetic conditions, but the addition of 2 vol% water to the feed induced catalyst deactivation, in particular the Hf-MOFs. Interestingly, mainly methanol and methane formation rates decreased, while CO formation rates were less affected by deactivation. No direct correlation was found between catalytic stability and framework stability (crystallinity, specific surface area). Experimental and computational studies suggest that water adsorption strength to the MOF node may affect the relative catalytic stability of Hf-UiO-67-Pt versus Zr-UiO-67-Pt methanol catalysts.This article is part of the discussion meeting issue 'Green carbon for the chemical industry of the future'.

2.
J Am Chem Soc ; 142(40): 17105-17118, 2020 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-32902970

RESUMEN

In catalysts for CO2 hydrogenation, the interface between metal nanoparticles (NPs) and the support material is of high importance for the activity and reaction selectivity. In Pt NP-containing UiO Zr-metal-organic frameworks (MOFs), key intermediates in methanol formation are adsorbed at open Zr-sites at the Pt-MOF interface. In this study, we investigate the dynamic role of the Zr-node and the influence of H2O on the CO2 hydrogenation reaction at 170 °C, through steady state and transient isotope exchange experiments, H2O cofeed measurements, and density functional theory (DFT) calculations. The study revealed that an increased number of Zr-node defects increase the formation rates to both methanol and methane. Transient experiments linked the increase to a higher number of surface intermediates for both products. Experiments involving either dehydrated or prehydrated Zr-nodes showed higher methanol and methane formation rates over the dehydrated Zr-node. Transient experiments suggested that the difference is related to competitive adsorption between methanol and water. DFT calculations and microkinetic modeling support this conclusion and give further insight into the equilibria involved in the competitive adsorption process. The calculations revealed weaker adsorption of methanol in defective or dehydrated nodes, in agreement with the larger gas phase concentration of methanol observed experimentally. The microkinetic model shows that [Zr2(µ-O)2]4+ and [Zr2(µ-OH)(µ-O)(OH)(H2O)]4+ are the main surface species when the concentration of water is lower than the number of defect sites. Lastly, although addition of water was found to promote methanol desorption, water does not change the methanol steady state reaction rate, while it has a substantial inhibiting effect on CH4 formation. These results indicate that water can be used to increase the reaction selectivity to methanol and encourages further detailed investigations of the catalyst system.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA