Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Gastroenterol Hepatol ; 38(5): 768-774, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36652526

RESUMEN

BACKGROUND AND AIM: Lack of visual recognition of colorectal polyps may lead to interval cancers. The mechanisms contributing to perceptual variation, particularly for subtle and advanced colorectal neoplasia, have scarcely been investigated. We aimed to evaluate visual recognition errors and provide novel mechanistic insights. METHODS: Eleven participants (seven trainees and four medical students) evaluated images from the UCL polyp perception dataset, containing 25 polyps, using eye-tracking equipment. Gaze errors were defined as those where the lesion was not observed according to eye-tracking technology. Cognitive errors occurred when lesions were observed but not recognized as polyps by participants. A video study was also performed including 39 subtle polyps, where polyp recognition performance was compared with a convolutional neural network. RESULTS: Cognitive errors occurred more frequently than gaze errors overall (65.6%), with a significantly higher proportion in trainees (P = 0.0264). In the video validation, the convolutional neural network detected significantly more polyps than trainees and medical students, with per-polyp sensitivities of 79.5%, 30.0%, and 15.4%, respectively. CONCLUSIONS: Cognitive errors were the most common reason for visual recognition errors. The impact of interventions such as artificial intelligence, particularly on different types of perceptual errors, needs further investigation including potential effects on learning curves. To facilitate future research, a publicly accessible visual perception colonoscopy polyp database was created.


Asunto(s)
Pólipos del Colon , Neoplasias Colorrectales , Humanos , Pólipos del Colon/diagnóstico , Pólipos del Colon/patología , Tecnología de Seguimiento Ocular , Inteligencia Artificial , Colonoscopía/métodos , Neoplasias Colorrectales/diagnóstico , Neoplasias Colorrectales/patología
2.
Dig Endosc ; 35(5): 645-655, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36527309

RESUMEN

OBJECTIVES: Convolutional neural networks (CNN) for computer-aided diagnosis of polyps are often trained using high-quality still images in a single chromoendoscopy imaging modality with sessile serrated lesions (SSLs) often excluded. This study developed a CNN from videos to classify polyps as adenomatous or nonadenomatous using standard narrow-band imaging (NBI) and NBI-near focus (NBI-NF) and created a publicly accessible polyp video database. METHODS: We trained a CNN with 16,832 high and moderate quality frames from 229 polyp videos (56 SSLs). It was evaluated with 222 polyp videos (36 SSLs) across two test-sets. Test-set I consists of 14,320 frames (157 polyps, 111 diminutive). Test-set II, which is publicly accessible, 3317 video frames (65 polyps, 41 diminutive), which was benchmarked with three expert and three nonexpert endoscopists. RESULTS: Sensitivity for adenoma characterization was 91.6% in test-set I and 89.7% in test-set II. Specificity was 91.9% and 88.5%. Sensitivity for diminutive polyps was 89.9% and 87.5%; specificity 90.5% and 88.2%. In NBI-NF, sensitivity was 89.4% and 89.5%, with a specificity of 94.7% and 83.3%. In NBI, sensitivity was 85.3% and 91.7%, with a specificity of 87.5% and 90.0%, respectively. The CNN achieved preservation and incorporation of valuable endoscopic innovations (PIVI)-1 and PIVI-2 thresholds for each test-set. In the benchmarking of test-set II, the CNN was significantly more accurate than nonexperts (13.8% difference [95% confidence interval 3.2-23.6], P = 0.01) with no significant difference with experts. CONCLUSIONS: A single CNN can differentiate adenomas from SSLs and hyperplastic polyps in both NBI and NBI-NF. A publicly accessible NBI polyp video database was created and benchmarked.


Asunto(s)
Adenoma , Pólipos del Colon , Neoplasias Colorrectales , Aprendizaje Profundo , Humanos , Pólipos del Colon/diagnóstico por imagen , Pólipos del Colon/patología , Colonoscopía/métodos , Neoplasias Colorrectales/patología , Adenoma/diagnóstico por imagen , Adenoma/patología , Imagen de Banda Estrecha/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA