Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Eur J Nucl Med Mol Imaging ; 51(7): 2036-2046, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38383743

RESUMEN

PURPOSE: High blood glucose (hBG) in patients undergoing [18F]FDG PET/CT scans often results in rescheduling the examination, which may lead to clinical delay for the patient and decrease productivity for the department. The aim of this study was to evaluate whether long-axial field-of-view (LAFOV) PET/CT can minimize the effect of altered bio-distribution in hBG patients and is able to provide diagnostic image quality in hBG situations. MATERIALS AND METHODS: Oncologic patients with elevated blood glucose (≥ 8.0 mmol/l) and normal blood glucose (< 8.0 mmol/l, nBG) levels were matched for tumor entity, gender, age, and BMI. hBG patients were further subdivided into two groups (BG 8-11 mmol/l and BG > 11 mmol/l). Tracer uptake in the liver, muscle, and tumor was evaluated. Furthermore, image quality was compared between long acquisitions (ultra-high sensitivity mode, 360 s) on a LAFOV PET/CT and routine acquisitions equivalent to a short-axial field-of-view scanner (simulated (sSAFOV), obtained with high sensitivity mode, 120 s). Tumor-to-background ratio (TBR) and contrast-to-noise ratio (CNR) were used as the main image quality criteria. RESULTS: Thirty-one hBG patients met the inclusion criteria and were matched with 31 nBG patients. Overall, liver uptake was significantly higher in hBG patients (SUVmean, 3.07 ± 0.41 vs. 2.37 ± 0.33; p = 0.03), and brain uptake was significantly lower (SUVmax, 7.58 ± 0.74 vs. 13.38 ± 3.94; p < 0.001), whereas muscle (shoulder/gluteal) uptake showed no statistically significant difference. Tumor uptake was lower in hBG patients, resulting in a significantly lower TBR in the hBG cohort (3.48 ± 0.74 vs. 5.29 ± 1.48, p < 0.001). CNR was higher in nBG compared to hBG patients (12.17 ± 4.86 vs. 23.31 ± 12.22, p < 0.001). However, subgroup analysis of nBG 8-11 mmol/l on sSAFOV PET/CT compared to hBG (> 11 mmol/l) patients examined with LAFOV PET/CT showed no statistical significant difference in CNR (19.84 ± 8.40 vs. 17.79 ± 9.3, p = 0.08). CONCLUSION: While elevated blood glucose (> 11 mmol) negatively affected TBR and CNR in our cohort, the images from a LAFOV PET-scanner had comparable CNR to PET-images acquired from nBG patients using sSAFOV PET/CT. Therefore, we argue that oncologic patients with increased blood sugar levels might be imaged safely with LAFOV PET/CT when rescheduling is not feasible.


Asunto(s)
Glucemia , Fluorodesoxiglucosa F18 , Tomografía Computarizada por Tomografía de Emisión de Positrones , Humanos , Femenino , Masculino , Persona de Mediana Edad , Anciano , Glucemia/análisis , Análisis por Apareamiento , Neoplasias/diagnóstico por imagen , Adulto , Radiofármacos/farmacocinética
2.
Eur J Nucl Med Mol Imaging ; 51(5): 1436-1443, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38095670

RESUMEN

PURPOSE: To evaluate the utility of long duration (10 min) acquisitions compared to standard 4 min scans in the evaluation of head and neck cancer (HNC) using a long-axial field-of-view (LAFOV) system in 2-[18F]FDG PET/CT. METHODS: HNC patients undergoing LAFOV PET/CT were included retrospectively according to a predefined sample size calculation. For each acquisition, FDG avid lymph nodes (LN) which were highly probable or equivocal for malignancy were identified by two board certified nuclear medicine physicians in consensus. The aim of this study was to establish the clinical acceptability of short-duration (4 min, C40%) acquisitions compared to full-count (10 min, C100%) in terms of the detection of LN metastases in HNC. Secondary endpoints were the positive predictive value for LN status (PPV) and comparison of SUVmax at C40% and C100%. Histology reports or confirmatory imaging were the reference standard. RESULTS: A total of 1218 records were screened and target recruitment was met with n = 64 HNC patients undergoing LAFOV. Median age was 65 years (IQR: 59-73). At C40%, a total of 387 lesions were detected (highly probable LN n = 274 and equivocal n = 113. The total number of lesions detected at C100% acquisition was 439, of them 291 (66%) highly probable LN and 148 (34%) equivocal. Detection rate between the two acquisitions did not demonstrate any significant differences (Pearson's Chi-Square test, p = 0.792). Sensitivity, specificity, PPV, NPV and accuracy for C40% were 83%, 44%, 55%, 76% and 36%, whilst for C100% were 85%, 56%, 55%, 85% and 43%, respectively. The improved accuracy reached borderline significance (p = 0.057). At the ROC analysis, lower SUVmax was identified for C100% (3.5) compared to C40% (4.5). CONCLUSION: In terms of LN detection, C40% acquisitions showed no significant difference compared to the C100% acquisitions. There was some improvement for lesions detection at C100%, with a small increment in accuracy reaching borderline significance, suggestive that the higher sensitivity afforded by LAFOV might translate to improved clinical performance in some patients.


Asunto(s)
Neoplasias de Cabeza y Cuello , Tomografía Computarizada por Tomografía de Emisión de Positrones , Humanos , Anciano , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Fluorodesoxiglucosa F18 , Estudios Retrospectivos , Radiofármacos , Tomografía de Emisión de Positrones , Neoplasias de Cabeza y Cuello/diagnóstico por imagen
3.
Eur J Nucl Med Mol Imaging ; 51(2): 422-433, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37740742

RESUMEN

PURPOSE: Inflamed, prone-to-rupture coronary plaques are an important cause of myocardial infarction and their early identification is crucial. Atherosclerotic plaques are characterized by overexpression of the type-2 somatostatin receptor (SST2) in activated macrophages. SST2 ligand imaging (e.g. with [68 Ga]Ga-DOTA-TOC) has shown promise in detecting and quantifying the inflammatory activity within atherosclerotic plaques. However, the sensitivity of standard axial field of view (SAFOV) PET scanners may be suboptimal for imaging coronary arteries. Long-axial field of view (LAFOV) PET/CT scanners may help overcome this limitation. We aim to assess the ability of [68 Ga]Ga-DOTA-TOC LAFOV-PET/CT in detecting calcified, SST2 overexpressing coronary artery plaques. METHODS: In this retrospective study, 108 oncological patients underwent [68 Ga]Ga-DOTA-TOC PET/CT on a LAFOV system. [68 Ga]Ga-DOTA-TOC uptake and calcifications in the coronary arteries were evaluated visually and semi-quantitatively. Data on patients' cardiac risk factors and coronary artery calcium score were also collected. Patients were followed up for 21.5 ± 3.4 months. RESULTS: A total of 66 patients (61.1%) presented with calcified coronary artery plaques. Of these, 32 patients had increased [68 Ga]Ga-DOTA-TOC uptake in at least one coronary vessel (TBR: 1.65 ± 0.53). Patients with single-vessel calcifications showed statistically significantly lower uptake (SUVmax 1.10 ± 0.28) compared to patients with two- (SUVmax 1.31 ± 0.29, p < 0.01) or three-vessel calcifications (SUVmax 1.24 ± 0.33, p < 0.01). There was a correlation between coronary artery calcium score (CACS) and [68 Ga]Ga-DOTA-TOC uptake, especially in the LAD (p = 0.02). Stroke and all-cause death occurred more frequently in patients with increased [68 Ga]Ga-DOTA-TOC uptake (15.63% vs. 0%; p:0.001 and 21.88% vs. 6.58%; p: 0.04, respectively) during the follow-up period. CONCLUSION: [68 Ga]Ga-DOTA-TOC as a marker for the macrophage activity can reveal unknown cases of inflamed calcified coronary artery plaques using a LAFOV PET system. [68 Ga]Ga-DOTA-TOC uptake increased with the degree of calcification and correlated with higher risk of stroke and all-cause death. [68 Ga]Ga-DOTA-TOC LAFOV PET/CT may be useful to assess patients' cardiovascular risk.


Asunto(s)
Compuestos Organometálicos , Placa Aterosclerótica , Accidente Cerebrovascular , Humanos , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Vasos Coronarios/diagnóstico por imagen , Octreótido , Estudios Retrospectivos , Calcio , Placa Aterosclerótica/diagnóstico por imagen , Inflamación/diagnóstico por imagen
4.
AJR Am J Roentgenol ; 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39230403

RESUMEN

The interpretation of clinical oncologic PET studies has historically used static reconstructions based on SUVs. SUVs and SUV-based images have important limitations, including dependence on uptake times and reduced conspicuity of tracer-avid lesions in organs with high background uptake. The acquisition of dynamic PET images enables additional PET reconstructions via Patlak modeling, which assumes that a tracer is irreversibly trapped by tissues of interest. The resulting multiparametric PET images capture a tracer's net trapping rate (Ki) and apparent volume of distribution (VD), separating the contributions of bound and free tracer fractions to the PET signal captured in the SUV. Potential benefits of multiparametric PET include higher quantitative stability, superior lesion conspicuity, and greater accuracy for differentiating malignant and benign lesions. However, the imaging protocols necessary for multiparametric PET are inherently more complex and time-intensive, despite the recent introduction of automated or semiautomated scanner-based reconstruction packages. In this Review, we examine the current state of multiparametric PET in whole-body oncologic imaging. We summarize the Patlak methodology and relevant tracer kinetics, discuss clinical workflows and protocol considerations, and highlight clinical challenges and opportunities. We aim to help oncologic imagers make informed decisions about whether to implement multiparametric PET in their clinical practices.

5.
Eur J Nucl Med Mol Imaging ; 49(11): 3870-3877, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35606526

RESUMEN

BACKGROUND AND PURPOSE: Treatment of oral squamous cell carcinoma (OSCC) is based on clinical exam, biopsy, and a precise imaging-based TNM-evaluation. A high sensitivity and specificity for magnetic resonance imaging (MRI) and F-18 FDG PET/CT are reported for N-staging. Nevertheless, staging of oral squamous cell carcinoma is most often based on computed tomography (CT) scans. This study aims to evaluate cost-effectiveness of MRI and PET/CT compared to standard of care imaging in initial staging of OSCC within the US Healthcare System. METHODS: A decision model was constructed using quality-adjusted life years (QALYs) and overall costs of different imaging strategies including a CT of the head, neck, and the thorax, MRI of the neck with CT of the thorax, and whole body F-18 FDG PET/CT using Markov transition simulations for different disease states. Input parameters were derived from literature and willingness to pay (WTP) was set to US $100,000/QALY. Deterministic sensitivity analysis of diagnostic parameters and costs was performed. Monte Carlo modeling was used for probabilistic sensitivity analysis. RESULTS: In the base-case scenario, total costs were at US $239,628 for CT, US $240,001 for MRI, and US $239,131 for F-18 FDG PET/CT whereas the model yielded an effectiveness of 5.29 QALYs for CT, 5.30 QALYs for MRI, and 5.32 QALYs for F-18 FDG PET/CT respectively. F-18 FDG PET/CT was the most cost-effective strategy over MRI as well as CT, and MRI was the cost-effective strategy over CT. Deterministic and probabilistic sensitivity analysis showed high robustness of the model with incremental cost effectiveness ratio remaining below US $100,000/QALY for a wide range of variability of input parameters. CONCLUSION: F-18 FDG PET/CT is the most cost-effective strategy in the initial N-staging of OSCC when compared to MRI and CT. Despite less routine use, both whole body PET/CT and MRI are cost-effective modalities in the N-staging of OSCC. Based on these findings, the implementation of PET/CT for initial staging could be suggested to help reduce costs while increasing effectiveness in OSCC.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de Cabeza y Cuello , Neoplasias de la Boca , Carcinoma de Células Escamosas/diagnóstico por imagen , Carcinoma de Células Escamosas/patología , Análisis Costo-Beneficio , Fluorodesoxiglucosa F18 , Neoplasias de Cabeza y Cuello/patología , Humanos , Imagen por Resonancia Magnética , Neoplasias de la Boca/diagnóstico por imagen , Neoplasias de la Boca/patología , Estadificación de Neoplasias , Tomografía Computarizada por Tomografía de Emisión de Positrones , Tomografía de Emisión de Positrones , Radiofármacos , Carcinoma de Células Escamosas de Cabeza y Cuello/patología , Tomografía Computarizada por Rayos X
7.
Eur J Nucl Med Mol Imaging ; 46(10): 2163-2168, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31289907

RESUMEN

PURPOSE: To investigate the in vivo correlation between 18F-fluoroethyl-tyrosine (18F-FET) uptake and amino acid transporter expression and vascularization in treatment-naive glioblastomas. METHODS: A total of 43 stereotactic biopsies were obtained from 13 patients with suspected glioblastoma prior to therapy. All patients underwent a dynamic 18F-FET PET/MRI scan before biopsy. Immunohistochemistry was performed using antibodies against SLC7A5 (amino acid transporter), MIB-1 (Ki67, proliferation), CD31 (vascularization) and CA-IX (hypoxia). The intensity of staining was correlated with 18F-FET uptake and the dynamic 18F-FET uptake slope at the biopsy target point. RESULTS: In all patients, the final diagnosis was IDH-wildtype glioblastoma, WHO grade IV. Static 18F-FET uptake was significantly correlated with SLC7A5 staining (r = 0.494, p = 0.001). While the dynamic 18F-FET uptake slope did not show a significant correlation with amino acid transporter expression, it was significantly correlated with the number of CD31-positive vessels (r = -0.350, p = 0.031), which is line with earlier results linking 18F-FET kinetics with vascularization and perfusion. Besides, static 18F-FET uptake also showed correlations with CA-IX staining (r = 0.394, p = 0.009) and CD31 positivity (r = 0.410, p = 0.006). While the correlation between static 18F-FET uptake and SLC7A5 staining was confirmed as significant in multivariate analysis, this was not the case for the correlation with CD31 positivity, most likely because of the lower effect size and the relatively low number of samples. No significant correlation between 18F-FET uptake and Ki67 proliferation index was observed in our cohort. CONCLUSION: Our results support the findings of preclinical studies suggesting that specific 18F-FET uptake in glioblastomas is mediated by amino acid transporters. As proposed previously, dynamic 18F-FET parameters might be more influenced by perfusion and therefore related to properties of the tumour neovascularization.


Asunto(s)
Neoplasias Encefálicas/diagnóstico por imagen , Glioblastoma/diagnóstico por imagen , Transportador de Aminoácidos Neutros Grandes 1/metabolismo , Radiofármacos/farmacocinética , Tirosina/análogos & derivados , Anciano , Encéfalo/irrigación sanguínea , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Femenino , Glioblastoma/metabolismo , Glioblastoma/patología , Humanos , Transportador de Aminoácidos Neutros Grandes 1/genética , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Imagen Multimodal , Neovascularización Patológica/diagnóstico por imagen , Tomografía de Emisión de Positrones , Unión Proteica , Tirosina/farmacocinética
8.
J Neuroradiol ; 46(1): 44-51, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29753641

RESUMEN

BACKGROUND AND PURPOSE: Several leakage correction algorithms for dynamic susceptibility contrast (DSC) magnetic resonance imaging (MRI)-based cerebral blood volume (CBV) measurement have been proposed, and combination with a preload of contrast agent is generally recommended. A single bolus application scheme would largely simplify and facilitate standardized clinical applications, while reducing contrast agent (CA) dose. The aim of this study was, therefore, to investigate whether appropriate leakage correction redundantizes prebolus application by comparing normalized DSC-based CBV (nCBV) measures of two consecutive CA boli. MATERIALS AND METHODS: Twenty-seven patients with suspected glioblastoma (WHO-grade-IV) underwent DSC-MRI during two consecutive boli of Gd-based CA. Four variants of two post-processing leakage correction techniques were compared with respect to nCBV in contrast enhancing tumor tissue. First, a reference curve approach with first pass and full integration of corrected ΔR2*(t), and second, a deconvolution-based approach using singular value decomposition (SVD) with a standard noise-dependent cutoff or Tikhonov regularization. RESULTS: Compared to respective uncorrected values, all leakage correction techniques increased nCBV for data acquired without prebolus, while there was no consistent trend for data acquired with prebolus. The best agreement between corrected nCBV values in contrast enhancing tumor, obtained in the same patients without and with prebolus, respectively, was obtained for the reference curve-based correction approach with either first pass or full integration. CONCLUSION: The reference curve-based leakage correction approach with integration-based nCBV calculation yielded a high accordance between nCBV values without and with prebolus, respectively. Thus, it appears possible to obtain valid nCBV in glioblastoma with a single CA injection.


Asunto(s)
Algoritmos , Neoplasias Encefálicas/diagnóstico por imagen , Volumen Sanguíneo Cerebral , Medios de Contraste/administración & dosificación , Gadolinio DTPA/administración & dosificación , Glioblastoma/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Meglumina/administración & dosificación , Compuestos Organometálicos/administración & dosificación , Femenino , Humanos , Interpretación de Imagen Asistida por Computador , Masculino , Persona de Mediana Edad , Reproducibilidad de los Resultados
10.
NMR Biomed ; 30(11)2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28805936

RESUMEN

Hypoxia plays an important role for the prognosis and therapy response of cancer. Thus, hypoxia imaging would be a valuable tool for pre-therapeutic assessment of tumor malignancy. However, there is no standard validated technique for clinical application available yet. Therefore, we performed a study in 12 patients with high-grade glioma, where we directly compared the two currently most promising techniques, namely the MR-based relative oxygen extraction fraction (MR-rOEF) and the PET hypoxia marker H-1-(3-[18 F]-fluoro-2-hydroxypropyl)-2-nitroimidazole ([18 F]-FMISO). MR-rOEF was determined from separate measurements of T2 , T2 * and relative cerebral blood volume (rCBV) employing a multi-parametric approach for quantification of the blood-oxygenation-level-dependent (BOLD) effect. With respect to [18 F]-FMISO-PET, besides the commonly used late uptake between 120 and 130 min ([18 F]-FMISO120-130 min ), we also analyzed the hypoxia specific uptake rate [18 F]-FMISO-k3 , as obtained by pharmacokinetic modeling of dynamic uptake data. Since pharmacokinetic modeling of partially acquired dynamic [18 F]-FMISO data was sensitive to a low signal-to-noise-ratio, analysis was restricted to high-uptake tumor regions. Individual spatial analyses of deoxygenation and hypoxia-related parameter maps revealed that high MR-rOEF values clustered in (edematous) peritumoral tissue, while areas with high [18 F]-FMISO120-130 min concentrated in and around active tumor with disrupted blood-brain barrier, i.e. contrast enhancement in T1 -weighted MRI. Volume-of-interest-based correlations between MR-rOEF and [18 F]-FMISO120-130 min as well as [18 F]-FMISO-k3 , and voxel-wise analyses in individual patients, yielded limited correlations, supporting the notion that [18 F]-FMISO uptake, even after 2 h, might still be influenced by perfusion while [18 F]-FMISO-k3 was severely hampered by noise. According to these results, vascular deoxygenation, as measured by MR-rOEF, and severe tissue hypoxia, as measured by [18 F]-FMISO, show a poor spatial correspondence. Overall, the two methods appear to rather provide complementary than redundant information about high-grade glioma biology.


Asunto(s)
Neoplasias Encefálicas/diagnóstico por imagen , Hipoxia de la Célula , Glioma/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Tomografía de Emisión de Positrones/métodos , Anciano , Femenino , Humanos , Aumento de la Imagen , Inmunohistoquímica , Masculino , Persona de Mediana Edad , Misonidazol/análogos & derivados
11.
Eur J Nucl Med Mol Imaging ; 44(3): 392-397, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27913827

RESUMEN

PURPOSE: 18F-fluorethyltyrosine-(FET)-PET and MRI-based relative cerebral blood volume (rCBV) have both been used to characterize gliomas. Recently, inter-individual correlations between peak static FET-uptake and rCBV have been reported. Herein, we assess the local intra-lesional relation between FET-PET parameters and rCBV. METHODS: Thirty untreated glioma patients (27 high-grade) underwent simultaneous PET/MRI on a 3 T hybrid scanner obtaining structural and dynamic susceptibility contrast sequences. Static FET-uptake and dynamic FET-slope were correlated with rCBV within tumour hotspots across patients and intra-lesionally using a mixed-effects model to account for inter-individual variation. Furthermore, maximal congruency of tumour volumes defined by FET-uptake and rCBV was determined. RESULTS: While the inter-individual relationship between peak static FET-uptake and rCBV could be confirmed, our intra-lesional, voxel-wise analysis revealed significant positive correlations (median r = 0.374, p < 0.0001). Similarly, significant inter- and intra-individual correlations were observed between FET-slope and rCBV. However, rCBV explained only 12% of the static and 5% of the dynamic FET-PET variance and maximal overlap of respective tumour volumes was 37% on average. CONCLUSIONS: Our results show that the relation between peak values of MR-based rCBV and static FET-uptake can also be observed intra-individually on a voxel basis and also applies to a dynamic FET parameter, possibly determining hotspots of higher biological malignancy. However, just a small part of the FET-PET signal variance is explained by rCBV and tumour volumes determined by the two modalities showed only moderate overlap. These findings indicate that FET-PET and MR-based rCBV provide both congruent and complimentary information on glioma biology.


Asunto(s)
Neoplasias Encefálicas/diagnóstico por imagen , Angiografía Cerebral , Glioma/diagnóstico por imagen , Angiografía por Resonancia Magnética , Tomografía de Emisión de Positrones , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Radiofármacos , Tirosina/análogos & derivados
12.
Eur J Nucl Med Mol Imaging ; 43(1): 133-141, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26219871

RESUMEN

PURPOSE: Amino acid positron emission tomography (PET) with [18F]-fluoroethyl-L-tyrosine (FET) is well established in the diagnostic work-up of malignant brain tumors. Analysis of FET-PET data using tumor-to-background ratios (TBR) has been shown to be highly valuable for the detection of viable hypermetabolic brain tumor tissue; however, it has not proven equally useful for tumor grading. Recently, textural features in 18-fluorodeoxyglucose-PET have been proposed as a method to quantify the heterogeneity of glucose metabolism in a variety of tumor entities. Herein we evaluate whether textural FET-PET features are of utility for grading and prognostication in patients with high-grade gliomas. METHODS: One hundred thirteen patients (70 men, 43 women) with histologically proven high-grade gliomas were included in this retrospective study. All patients received static FET-PET scans prior to first-line therapy. TBR (max and mean), volumetric parameters and textural parameters based on gray-level neighborhood difference matrices were derived from static FET-PET images. Receiver operating characteristic (ROC) and discriminant function analyses were used to assess the value for tumor grading. Kaplan-Meier curves and univariate and multivariate Cox regression were employed for analysis of progression-free and overall survival. RESULTS: All FET-PET textural parameters showed the ability to differentiate between World Health Organization (WHO) grade III and IV tumors (p < 0.001; AUC 0.775). Further improvement in discriminatory power was possible through a combination of texture and metabolic tumor volume, classifying 85 % of tumors correctly (AUC 0.830). TBR and volumetric parameters alone were correlated with tumor grade, but showed lower AUC values (0.644 and 0.710, respectively). Furthermore, a correlation of FET-PET texture but not TBR was shown with patient PFS and OS, proving significant in multivariate analysis as well. Volumetric parameters were predictive for OS, but this correlation did not hold in multivariate analysis. CONCLUSIONS: Determination of uptake heterogeneity in pre-therapeutic FET-PET using textural features proved valuable for the (sub-)grading of high-grade glioma as well as prediction of tumor progression and patient survival, and showed improved performance compared to standard parameters such as TBR and tumor volume. Our results underscore the importance of intratumoral heterogeneity in the biology of high-grade glial cell tumors and may contribute to individual therapy planning in the future, although they must be confirmed in prospective studies before incorporation into clinical routine.


Asunto(s)
Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/patología , Glioma/diagnóstico por imagen , Glioma/patología , Tomografía de Emisión de Positrones , Tirosina/análogos & derivados , Neoplasias Encefálicas/terapia , Femenino , Glioma/terapia , Humanos , Masculino , Persona de Mediana Edad , Clasificación del Tumor , Estudios Retrospectivos , Análisis de Supervivencia , Carga Tumoral
13.
Eur J Nucl Med Mol Imaging ; 43(12): 2190-2200, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27094314

RESUMEN

INTRODUCTION: The combination of Positron Emission Tomography (PET) with magnetic resonance imaging (MRI) in hybrid PET/MRI scanners offers a number of advantages in investigating brain structure and function. A critical step of PET data reconstruction is attenuation correction (AC). Accounting for bone in attenuation maps (µ-map) was shown to be important in brain PET studies. While there are a number of MRI-based AC methods, no systematic comparison between them has been performed so far. The aim of this work was to study the different performance obtained by some of the recent methods presented in the literature. To perform such a comparison, we focused on [18F]-Fluorodeoxyglucose-PET/MRI neurodegenerative dementing disorders, which are known to exhibit reduced levels of glucose metabolism in certain brain regions. METHODS: Four novel methods were used to calculate µ-maps from MRI data of 15 patients with Alzheimer's dementia (AD). The methods cover two atlas-based methods, a segmentation method, and a hybrid template/segmentation method. Additionally, the Dixon-based and a UTE-based method, offered by a vendor, were included in the comparison. Performance was assessed at three levels: tissue identification accuracy in the µ-map, quantitative accuracy of reconstructed PET data in specific brain regions, and precision in diagnostic images at identifying hypometabolic areas. RESULTS: Quantitative regional errors of -20--10 % were obtained using the vendor's AC methods, whereas the novel methods produced errors in a margin of ±5 %. The obtained precision at identifying areas with abnormally low levels of glucose uptake, potentially regions affected by AD, were 62.9 and 79.5 % for the two vendor AC methods, the former ignoring bone and the latter including bone information. The precision increased to 87.5-93.3 % in average for the four new methods, exhibiting similar performances. CONCLUSION: We confirm that the AC methods based on the Dixon and UTE sequences provided by the vendor are inferior to alternative techniques. As a novel finding, there was no substantial difference between the recently proposed atlas-based, template-based and segmentation-based methods.


Asunto(s)
Enfermedad de Alzheimer/diagnóstico por imagen , Artefactos , Encéfalo/diagnóstico por imagen , Aumento de la Imagen/métodos , Imagen por Resonancia Magnética/métodos , Tomografía de Emisión de Positrones/métodos , Anciano , Enfermedad de Alzheimer/patología , Encéfalo/patología , Femenino , Fluorodesoxiglucosa F18 , Humanos , Masculino , Persona de Mediana Edad , Imagen Multimodal/métodos , Radiofármacos , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
14.
Eur J Nucl Med Mol Imaging ; 43(12): 2114-2121, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27290607

RESUMEN

PURPOSE: The aim of our study was to compare the diagnostic performance of 68Ga-PSMA PET and 99mTc bone scintigraphy (BS) for the detection of bone metastases in prostate cancer (PC) patients. METHODS: One hundred twenty-six patients who received planar BS and PSMA PET within three months and without change of therapy were extracted from our database. Bone lesions were categorized into benign, metastatic, or equivocal by two experienced observers. A best valuable comparator (BVC) was defined based on BS, PET, additional imaging, and follow-up data. The cohort was further divided into clinical subgroups (primary staging, biochemical recurrence, and metastatic castration-resistant prostate cancer [mCRPC]). Additionally, subgroups of patients with less than 30 days delay between the two imaging procedures and with additional single-photon emission computed tomography (SPECT) were analyzed. RESULTS: A total of 75 of 126 patients were diagnosed with bone metastases. Sensitivities and specificities regarding overall bone involvement were 98.7-100 % and 88.2-100 % for PET, and 86.7-89.3 % and 60.8-96.1 % (p < 0.001) for BS, with ranges representing results for 'optimistic' or 'pessimistic' classification of equivocal lesions. Out of 1115 examined bone regions, 410 showed metastases. Region-based analysis revealed a sensitivity and specificity of 98.8-99.0 % and 98.9-100 % for PET, and 82.4-86.6 % and 91.6-97.9 % (p < 0.001) for BS, respectively. PSMA PET also performed better in all subgroups, except patient-based analysis in mCRPC. CONCLUSION: Ga-PSMA PET outperforms planar BS for the detection of affected bone regions as well as determination of overall bone involvement in PC patients. Our results indicate that BS in patients who have received PSMA PET for staging only rarely offers additional information; however, prospective studies, including a standardized integrated x-ray computed tomography (SPECT/CT) protocol, should be performed in order to confirm the presented results.


Asunto(s)
Antígenos de Superficie , Neoplasias Óseas/diagnóstico por imagen , Neoplasias Óseas/secundario , Radioisótopos de Galio , Glutamato Carboxipeptidasa II , Tomografía de Emisión de Positrones/métodos , Neoplasias de la Próstata/diagnóstico por imagen , Anciano , Anciano de 80 o más Años , Neoplasias Óseas/patología , Humanos , Masculino , Persona de Mediana Edad , Estadificación de Neoplasias , Neoplasias de la Próstata/patología , Radiofármacos , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
15.
Eur J Nucl Med Mol Imaging ; 42(7): 1012-24, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25876704

RESUMEN

PURPOSE: The aim of this study was to evaluate the feasibility of hybrid [(18)F]fluorodeoxyglucose (FDG) positron emission tomography (PET)/MRI in patients with large vessel vasculitis (LVV) by comparing visual and quantitative parameters to that of PET/CT. Furthermore, the value of PET/MRI in disease activity and extent of LVV was assessed. METHODS: A total of 16 [(18)F]FDG PET/MRI and 12 [(18)F]-FDG PET/CT examinations were performed in 12 patients with LVV. MRI of the vessel wall by T1-weighted and T2-weighted sequences was used for anatomical localization of FDG uptake and identification of morphological changes associated with LVV. In addition, contrast-enhanced (CE) magnetic resonance angiography (MRA) was performed. The vascular FDG uptake in the vasculitis group was compared to a reference group of 16 patients using a four-point visual score. Visual scores and quantitative parameters [maximum standardized uptake value (SUVmax) and target to background ratio (TBR)] were compared between PET/MRI and PET/CT. Furthermore, correlations between C-reactive protein (CRP) and quantitative PET results, as well the extent of vasculitis in PET, MRI/CE-MRA and combined PET/MRI, were analysed. RESULTS: TBRs, SUVmax values and visual scores correlated well between PET/MRI and PET/CT (r = 0.92, r = 0.91; r = 0.84, p < 0.05). There was no significant difference between both modalities concerning SUVmax measurements and visual scores. In PET/MRI, PET alone revealed abnormal FDG uptake in 86 vascular regions. MRI/CE-MRA indicated 49 vessel segments with morphological changes related to vasculitis, leading to a total number of 95 vasculitis regions in combination with PET. Strong and significant correlations between CRP and disease extent in PET alone (r = 0.75, p = 0.0067) and PET/MRI (r = 0.92, p < 0.0001) in contrast to MRI/CE-MRA only were observed. Regarding disease activity, no significant correlations were seen between quantitative PET results and CRP, although there was a trend towards significance (r = 0.55, p = 0.0651). PET/MRI also showed active LVV in 15/16 examinations. CONCLUSION: Hybrid PET/MRI is feasible in LVV and holds promise for precisely determining disease extent and disease activity.


Asunto(s)
Imagen por Resonancia Magnética , Imagen Multimodal , Tomografía de Emisión de Positrones , Tomografía Computarizada por Rayos X , Vasculitis/diagnóstico por imagen , Adulto , Anciano , Anciano de 80 o más Años , Aorta/diagnóstico por imagen , Femenino , Fluorodesoxiglucosa F18 , Humanos , Masculino , Persona de Mediana Edad , Proyectos Piloto , Radiofármacos , Vasculitis/diagnóstico
16.
J Nucl Med ; 65(3): 470-474, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38212073

RESUMEN

Ictal SPECT is an informative seizure imaging technique to tailor epilepsy surgery. However, capturing the onset of unpredictable seizures is a medical and logistic challenge. Here, we sought to image planned seizures triggered by direct stimulation of epileptic networks via stereotactic electroencephalography (sEEG) electrodes. Methods: In this case series of 3 adult participants with left temporal epilepsy, we identified and stimulated sEEG contacts able to trigger patient-typical seizures. We administered 99mTc-HMPAO within 12 s of ictal onset and acquired SPECT images within 40 min without any adverse events. Results: Ictal hyperperfusion maps partially overlapped concomitant sEEG seizure activity. In both participants known for periictal aphasia, SPECT imaging revealed hyperperfusion in the speech cortex lacking sEEG coverage. Conclusion: Triggering of seizures for ictal SPECT complements discrete sEEG sampling with spatially complete images of early seizure propagation. This readily implementable method revives interest in seizure imaging to guide resective epilepsy surgery.


Asunto(s)
Epilepsia , Convulsiones , Adulto , Humanos , Estudios de Factibilidad , Convulsiones/diagnóstico por imagen , Tomografía Computarizada de Emisión de Fotón Único , Corteza Cerebral
17.
Cancer Imaging ; 23(1): 28, 2023 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-36934273

RESUMEN

Recently introduced long-axial field-of-view (LAFOV) PET/CT systems represent one of the most significant advancements in nuclear medicine since the advent of multi-modality PET/CT imaging. The higher sensitivity exhibited by such systems allow for reductions in applied activity and short duration scans. However, we consider this to be just one small part of the story: Instead, the ability to image the body in its entirety in a single FOV affords insights which standard FOV systems cannot provide. For example, we now have the ability to capture a wider dynamic range of a tracer by imaging it over multiple half-lives without detrimental image noise, to leverage lower radiopharmaceutical doses by using dual-tracer techniques and with improved quantification. The potential for quantitative dynamic whole-body imaging using abbreviated protocols potentially makes these techniques viable for routine clinical use, transforming PET-reporting from a subjective analysis of semi-quantitative maps of radiopharmaceutical uptake at a single time-point to an accurate and quantitative, non-invasive tool to determine human function and physiology and to explore organ interactions and to perform whole-body systems analysis. This article will share the insights obtained from 2 years' of clinical operation of the first Biograph Vision Quadra (Siemens Healthineers) LAFOV system. It will also survey the current state-of-the-art in PET technology. Several technologies are poised to furnish systems with even greater sensitivity and resolution than current systems, potentially with orders of magnitude higher sensitivity. Current barriers which remain to be surmounted, such as data pipelines, patient throughput and the hindrances to implementing kinetic analysis for routine patient care will also be discussed.


Asunto(s)
Medicina Nuclear , Tomografía Computarizada por Tomografía de Emisión de Positrones , Humanos , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Radiofármacos , Cinética , Tomografía de Emisión de Positrones/métodos
18.
Semin Nucl Med ; 2023 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-38044175

RESUMEN

Musculoskeletal disorders of nononcological origin are one of the most frequent reasons for consultation. Patients suffering from musculoskeletal disorders also consult more than once for the same reason. This results in multiple clinical follow-ups after several radiological and serum examinations, the main ones including X-rays targeting the painful anatomical region and inflammatory serum parameters. As part of their work up, patients suffering from musculoskeletal disorders often require multisequence, multi-parameter MRI. PET/MRI is a promising imaging modality for their diagnosis, with the added advantage of being able to be performed in a single visit. PET/MRI is particularly useful for diagnosing osteomyelitis, spondylodiscitis, arthritis, many pediatric pathologies, and a wide range of other musculoskeletal pathologies. PET/MRI is already used to diagnose malignant bone tumors such as osteosarcoma. However, current knowledge of the indications for PET/MRI in nononcological musculoskeletal disorders is based on studies involving only a few patients. This review focuses on the usefulness of PET/MRI for diagnosing nononcological musculoskeletal disorders.

19.
Sci Rep ; 12(1): 7148, 2022 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-35504955

RESUMEN

Aim of this study was to validate the prognostic impact of clinical parameters and baseline 18F-FDG-PET/CT derived textural features to predict histopathologic response and survival in patients with esophageal squamous cell carcinoma undergoing neoadjuvant chemoradiation (nCRT) and surgery. Between 2005 and 2014, 38 ESCC were treated with nCRT and surgery. For all patients, the 18F-FDG-PET-derived parameters metabolic tumor volume (MTV), SUVmax, contrast and busyness were calculated for the primary tumor using a SUV-threshold of 3. The parameter uniformity was calculated using contrast-enhanced computed tomography. Based on histopathological response to nCRT, patients were classified as good responders (< 10% residual tumor) (R) or non-responders (≥ 10% residual tumor) (NR). Regression analyses were used to analyse the association of clinical parameters and imaging parameters with treatment response and overall survival (OS). Good response to nCRT was seen in 27 patients (71.1%) and non-response was seen in 11 patients (28.9%). Grading was the only parameter predicting response to nCRT (Odds Ratio (OR) = 0.188, 95% CI: 0.040-0.883; p = 0.034). No association with histopathologic treatment response was seen for any of the evaluated imaging parameters including SUVmax, MTV, busyness, contrast and uniformity. Using multivariate Cox-regression analysis, the heterogeneity parameters busyness (Hazard Ratio (HR) = 1.424, 95% CI: 1.044-1.943; p = 0.026) and contrast (HR = 6.678, 95% CI: 1.969-22.643; p = 0.002) were independently associated with OS, while no independent association with OS was seen for SUVmax and MTV. In patients with ESCC undergoing nCRT and surgery, baseline 18F-FDG-PET/CT derived parameters could not predict histopathologic response to nCRT. However, the PET/CT derived features busyness and contrast were independently associated with OS and should be further investigated.


Asunto(s)
Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Neoplasias Esofágicas/diagnóstico por imagen , Neoplasias Esofágicas/terapia , Carcinoma de Células Escamosas de Esófago/diagnóstico por imagen , Carcinoma de Células Escamosas de Esófago/terapia , Fluorodesoxiglucosa F18/metabolismo , Humanos , Imagen Multimodal/métodos , Terapia Neoadyuvante , Neoplasia Residual , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Radiofármacos/metabolismo
20.
Diagnostics (Basel) ; 12(10)2022 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-36292019

RESUMEN

Both static and dynamic O-(2-[18F]fluoroethyl)-l-tyrosine-(FET)-PET and 1H magnetic resonance spectroscopy (MRS) are useful tools for grading and prognostication in gliomas. However, little is known about the potential of multimodal imaging comprising both procedures. We therefore acquired NAA/Cr and Cho/Cr ratios in multi-voxel MRS as well as FET-PET parameters in 67 glioma patients and determined multiparametric parameter combinations. Using receiver operating characteristics, differentiation between low-grade and high-grade glioma was possible by static FET-PET (area under the curve (AUC) 0.86, p = 0.001), time-to-peak (TTP; AUC 0.79, p = 0.049), and using the Cho/Cr ratio (AUC 0.72, p = 0.039), while the multimodal analysis led to improved discrimination with an AUC of 0.97 (p = 0.001). In order to distinguish glioblastoma from non-glioblastoma, MRS (NAA/Cr ratio, AUC 0.66, p = 0.031), and dynamic FET-PET (AUC 0.88, p = 0.001) were superior to static FET imaging. The multimodal analysis increased the accuracy with an AUC of 0.97 (p < 0.001). In the survival analysis, PET parameters, but not spectroscopy, were significantly correlated with overall survival (OS, static PET p = 0.014, TTP p = 0.012), still, the multiparametric analysis, including MRS, was also useful for the prediction of OS (p = 0.002). In conclusion, FET-PET and MRS provide complementary information to better characterize gliomas before therapy, which is particularly interesting with respect to the increasing use of hybrid PET/MRI for brain tumors.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA