Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Glob Chang Biol ; 26(11): 6276-6295, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32914511

RESUMEN

Climatic impacts are especially pronounced in the Arctic, which as a region is warming twice as fast as the rest of the globe. Here, we investigate how mean climatic conditions and rates of climatic change impact parasitoid insect communities in 16 localities across the Arctic. We focus on parasitoids in a widespread habitat, Dryas heathlands, and describe parasitoid community composition in terms of larval host use (i.e., parasitoid use of herbivorous Lepidoptera vs. pollinating Diptera) and functional groups differing in their closeness of host associations (koinobionts vs. idiobionts). Of the latter, we expect idiobionts-as being less fine-tuned to host development-to be generally less tolerant to cold temperatures, since they are confined to attacking hosts pupating and overwintering in relatively exposed locations. To further test our findings, we assess whether similar climatic variables are associated with host abundances in a 22 year time series from Northeast Greenland. We find sites which have experienced a temperature rise in summer while retaining cold winters to be dominated by parasitoids of Lepidoptera, with the reverse being true for the parasitoids of Diptera. The rate of summer temperature rise is further associated with higher levels of herbivory, suggesting higher availability of lepidopteran hosts and changes in ecosystem functioning. We also detect a matching signal over time, as higher summer temperatures, coupled with cold early winter soils, are related to high herbivory by lepidopteran larvae, and to declines in the abundance of dipteran pollinators. Collectively, our results suggest that in parts of the warming Arctic, Dryas is being simultaneously exposed to increased herbivory and reduced pollination. Our findings point to potential drastic and rapid consequences of climate change on multitrophic-level community structure and on ecosystem functioning and highlight the value of collaborative, systematic sampling effort.


Asunto(s)
Ecosistema , Herbivoria , Animales , Regiones Árticas , Groenlandia , Interacciones Huésped-Parásitos , Larva
2.
Mol Phylogenet Evol ; 125: 232-242, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29545110

RESUMEN

Ancient lakes are renowned for their exceptional diversity of endemic species. As model systems for the study of sympatric speciation, it is necessary to understand whether a given hypothesized species flock is of monophyletic or polyphyletic origin. Here, we present the first molecular characterization of the Hyalella (Crustacea: Amphipoda) species complex of Lake Titicaca, using COI and 28S DNA sequences, including samples from the connected Small and Large Lakes that comprise Lake Titicaca as well as from a broader survey of southern South American sites. At least five evolutionarily distant lineages are present within Lake Titicaca, which were estimated to have diverged from one another 12-20 MYA. These major lineages are dispersed throughout the broader South American Hyalella phylogeny, with each lineage representing at least one independent colonization of the lake. Moreover, complex genetic relationships are revealed between Lake Titicaca individuals and those from surrounding water bodies, which may be explained by repeated dispersal into and out of the lake, combined with parallel intralacustrine diversification within two separate clades. Although further work in deeper waters will be required to determine the number of species present and modes of diversification, our results strongly indicate that this amphipod species cloud is polyphyletic with a complex geographic history.


Asunto(s)
Anfípodos/fisiología , Lagos , Anfípodos/genética , Animales , Teorema de Bayes , Biodiversidad , Intervalos de Confianza , Especiación Genética , Geografía , Funciones de Verosimilitud , Filogenia , Especificidad de la Especie , Simpatría , Factores de Tiempo
3.
PLoS One ; 10(11): e0142890, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26600157

RESUMEN

Here we report the widespread natural occurrence of a known antibiotic and antineoplastic compound, hydroxyurea in animals from many taxonomic groups. Hydroxyurea occurs in all the organisms we have examined including invertebrates (molluscs and crustaceans), fishes from several major groups, amphibians and mammals. The species with highest concentrations was an elasmobranch (sharks, skates and rays), the little skate Leucoraja erinacea with levels up to 250 µM, high enough to have antiviral, antimicrobial and antineoplastic effects based on in vitro studies. Embryos of L. erinacea showed increasing levels of hydroxyurea with development, indicating the capacity for hydroxyurea synthesis. Certain tissues of other organisms (e.g. skin of the frog (64 µM), intestine of lobster (138 µM) gills of the surf clam (100 µM)) had levels high enough to have antiviral effects based on in vitro studies. Hydroxyurea is widely used clinically in the treatment of certain human cancers, sickle cell anemia, psoriasis, myeloproliferative diseases, and has been investigated as a potential treatment of HIV infection and its presence at high levels in tissues of elasmobranchs and other organisms suggests a novel mechanism for fighting disease that may explain the disease resistance of some groups. In light of the known production of nitric oxide from exogenously applied hydroxyurea, endogenous hydoxyurea may play a hitherto unknown role in nitric oxide dynamics.


Asunto(s)
Antineoplásicos/aislamiento & purificación , Antineoplásicos/metabolismo , Hidroxiurea/aislamiento & purificación , Hidroxiurea/metabolismo , Anemia de Células Falciformes/tratamiento farmacológico , Animales , Antineoplásicos/química , Crustáceos/metabolismo , Infecciones por VIH/tratamiento farmacológico , Humanos , Hidroxiurea/química , Moluscos/metabolismo , Tiburones/metabolismo , Rajidae/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA