Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Plant Physiol ; 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39218791

RESUMEN

Flower drop is a major cause for yield loss in many crops. Previously, we found that tomato (Solanum lycopersicum) INFLORESCENCE DEFICIENT IN ABSCISSION-Like (SlIDL6) contributes to flower drop induced by low light. However, the molecular mechanisms by which SlIDL6 acts as a signal to regulate low light-induced abscission remain unclear. In this study, SlIDL6 was found to elevate cytosolic Ca2+ concentrations ([Ca2+]cyt) in the abscission zone (AZ), which was required for SlIDL6-induced flower drop under low light. We further identified that one calcium-dependent protein kinase gene (SlCPK10) was highly expressed in the AZ and up-regulated by SlIDL6-triggered [Ca2+]cyt. Over-expression and knockout of SlCPK10 in tomato resulted in accelerated and delayed abscission, respectively. Genetic evidence further indicated that knockout of SlCPK10 significantly impaired the function of SlIDL6 in accelerating abscission. Furthermore, Ser-371 phosphorylation in SlCPK10 dependent on SlIDL6 was necessary and sufficient for its function in regulating flower drop, probably by stabilizing the SlCPK10 proteins. Taken together, our findings reveal that SlCPK10, as a downstream component of the IDL6 signaling pathway, regulates flower drop in tomato under low light stress.

2.
Plant Cell ; 34(11): 4388-4408, 2022 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-35972422

RESUMEN

Premature abscission of flowers and fruits triggered by low light stress can severely reduce crop yields. However, the underlying molecular mechanism of this organ abscission is not fully understood. Here, we show that a gene (SlCLV3) encoding CLAVATA3 (CLV3), a peptide hormone that regulates stem cell fate in meristems, is highly expressed in the pedicel abscission zone (AZ) in response to low light in tomato (Solanum lycopersicum). SlCLV3 knockdown and knockout lines exhibit delayed low light-induced flower drop. The receptor kinases SlCLV1 and BARELY ANY MERISTEM1 function in the SlCLV3 peptide-induced low light response in the AZ to decrease expression of the transcription factor gene WUSCHEL (SlWUS). DNA affinity purification sequencing identified the transcription factor genes KNOX-LIKE HOMEDOMAIN PROTEIN1 (SlKD1) and FRUITFULL2 (SlFUL2) as SlWUS target genes. Our data reveal that low light reduces SlWUS expression, resulting in higher SlKD1 and SlFUL2 expression in the AZ, thereby perturbing the auxin response gradient and causing increased ethylene production, eventually leading to the initiation of abscission. These results demonstrate that the SlCLV3-SlWUS signaling pathway plays a central role in low light-induced abscission by affecting auxin and ethylene homeostasis.


Asunto(s)
Etilenos , Flores , Ácidos Indolacéticos , Proteínas de Plantas , Solanum lycopersicum , Etilenos/metabolismo , Flores/genética , Flores/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas/genética , Homeostasis , Ácidos Indolacéticos/metabolismo , Solanum lycopersicum/genética , Solanum lycopersicum/crecimiento & desarrollo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
3.
Plant Physiol ; 192(1): 648-665, 2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-36760172

RESUMEN

Cold stress is a key environmental constraint that dramatically affects the growth, productivity, and quality of tomato (Solanum lycopersicum); however, the underlying molecular mechanisms of cold tolerance remain poorly understood. In this study, we identified REDUCED CHLOROPLAST COVERAGE 2 (SlREC2) encoding a tetratricopeptide repeat protein that positively regulates tomato cold tolerance. Disruption of SlREC2 largely reduced abscisic acid (ABA) levels, photoprotection, and the expression of C-REPEAT BINDING FACTOR (CBF)-pathway genes in tomato plants under cold stress. ABA deficiency in the notabilis (not) mutant, which carries a mutation in 9-CIS-EPOXYCAROTENOID DIOXYGENASE 1 (SlNCED1), strongly inhibited the cold tolerance of SlREC2-silenced plants and empty vector control plants and resulted in a similar phenotype. In addition, foliar application of ABA rescued the cold tolerance of SlREC2-silenced plants, which confirms that SlNCED1-mediated ABA accumulation is required for SlREC2-regulated cold tolerance. Strikingly, SlREC2 physically interacted with ß-RING CAROTENE HYDROXYLASE 1b (SlBCH1b), a key regulatory enzyme in the xanthophyll cycle. Disruption of SlBCH1b severely impaired photoprotection, ABA accumulation, and CBF-pathway gene expression in tomato plants under cold stress. Taken together, this study reveals that SlREC2 interacts with SlBCH1b to enhance cold tolerance in tomato via integration of SlNCED1-mediated ABA accumulation, photoprotection, and the CBF-pathway, thus providing further genetic knowledge for breeding cold-resistant tomato varieties.


Asunto(s)
Solanum lycopersicum , Solanum lycopersicum/genética , Repeticiones de Tetratricopéptidos , Fitomejoramiento , Ácido Abscísico/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Mutación/genética , Regulación de la Expresión Génica de las Plantas , Frío
4.
J Exp Bot ; 75(11): 3337-3350, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38486362

RESUMEN

Galactinol synthase (GolS), which catalyses the synthesis of galactinol, is the first critical enzyme in the biosynthesis of raffinose family oligosaccharides (RFOs) and contributes to plant growth and development, and resistance mechanisms. However, its role in fruit development remains largely unknown. In this study, we used CRISPR/Cas9 gene-editing technology in tomato (Solanum lycopersicum) to create the gols2 mutant showing uniformly green fruits without dark-green shoulders, and promoting fruit ripening. Analysis indicated that galactinol was undetectable in the ovaries and fruits of the mutant, and the accumulation of chlorophyll and chloroplast development was suppressed in the fruits. RNA-sequencing analysis showed that genes related to chlorophyll accumulation and chloroplast development were down-regulated, including PROTOCHLOROPHYLLIDE OXIDOREDUCTASE, GOLDEN 2-LIKE 2, and CHLOROPHYLL A/B-BINDING PROTEINS. In addition, early color transformation and ethylene release was prompted in the gols2 lines by regulation of the expression of genes involved in carotenoid and ethylene metabolism (e.g. PHYTOENE SYNTHASE 1, CAROTENE CIS-TRANS ISOMERASE, and 1-AMINOCYCLOPROPANE-1-CARBOXYLIC ACID SYNTHASE2/4) and fruit ripening (e.g. RIPENING INHIBITOR, NON-RIPENING, and APETALA2a). Our results provide evidence for the involvement of GolS2 in pigment and ethylene metabolism of tomato fruits.


Asunto(s)
Carotenoides , Clorofila , Etilenos , Frutas , Proteínas de Plantas , Solanum lycopersicum , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Solanum lycopersicum/crecimiento & desarrollo , Solanum lycopersicum/enzimología , Carotenoides/metabolismo , Clorofila/metabolismo , Frutas/metabolismo , Frutas/genética , Frutas/crecimiento & desarrollo , Etilenos/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Galactosiltransferasas/metabolismo , Galactosiltransferasas/genética , Regulación de la Expresión Génica de las Plantas
5.
J Integr Plant Biol ; 66(4): 749-770, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38420861

RESUMEN

Auxin regulates flower and fruit abscission, but how developmental signals mediate auxin transport in abscission remains unclear. Here, we reveal the role of the transcription factor BEL1-LIKE HOMEODOMAIN11 (SlBEL11) in regulating auxin transport during abscission in tomato (Solanum lycopersicum). SlBEL11 is highly expressed in the fruit abscission zone, and its expression increases during fruit development. Knockdown of SlBEL11 expression by RNA interference (RNAi) caused premature fruit drop at the breaker (Br) and 3 d post-breaker (Br+3) stages of fruit development. Transcriptome and metabolome analysis of SlBEL11-RNAi lines revealed impaired flavonoid biosynthesis and decreased levels of most flavonoids, especially quercetin, which functions as an auxin transport inhibitor. This suggested that SlBEL11 prevents premature fruit abscission by modulating auxin efflux from fruits, which is crucial for the formation of an auxin response gradient. Indeed, quercetin treatment suppressed premature fruit drop in SlBEL11-RNAi plants. DNA affinity purification sequencing (DAP-seq) analysis indicated that SlBEL11 induced expression of the transcription factor gene SlMYB111 by directly binding to its promoter. Chromatin immunoprecipitation-quantitative polymerase chain reaction and electrophoretic mobility shift assay showed that S. lycopersicum MYELOBLASTOSIS VIRAL ONCOGENE HOMOLOG111 (SlMYB111) induces the expression of the core flavonoid biosynthesis genes SlCHS1, SlCHI, SlF3H, and SlFLS by directly binding to their promoters. Our findings suggest that the SlBEL11-SlMYB111 module modulates flavonoid biosynthesis to fine-tune auxin efflux from fruits and thus maintain an auxin response gradient in the pedicel, thereby preventing premature fruit drop.


Asunto(s)
Solanum lycopersicum , Solanum lycopersicum/genética , Frutas/metabolismo , Quercetina/farmacología , Quercetina/metabolismo , Ácidos Indolacéticos/metabolismo , Factores de Transcripción/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/metabolismo
6.
Plant Physiol ; 189(4): 2396-2412, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35522030

RESUMEN

Plant organ abscission, a process that is important for development and reproductive success, is inhibited by the phytohormone auxin and promoted by another phytohormone, jasmonic acid (JA). However, the molecular mechanisms underlying the antagonistic effects of auxin and JA in organ abscission are unknown. We identified a tomato (Solanum lycopersicum) class III homeodomain-leucine zipper transcription factor, HOMEOBOX15A (SlHB15A), which was highly expressed in the flower pedicel abscission zone and induced by auxin. Knocking out SlHB15A using clustered regularly interspaced short palindromic repeats-associated protein 9 technology significantly accelerated abscission. In contrast, overexpression of microRNA166-resistant SlHB15A (mSlHB15A) delayed abscission. RNA sequencing and reverse transcription-quantitative PCR analyses showed that knocking out SlHB15A altered the expression of genes related to JA biosynthesis and signaling. Furthermore, functional analysis indicated that SlHB15A regulates abscission by depressing JA-isoleucine (JA-Ile) levels through inhabiting the expression of JASMONATE-RESISTANT1 (SlJAR1), a gene involved in JA-Ile biosynthesis, which could induce abscission-dependent and abscission-independent ethylene signaling. SlHB15A bound directly to the SlJAR1 promoter to silence SlJAR1, thus delaying abscission. We also found that flower removal enhanced JA-Ile content and that application of JA-Ile severely impaired the inhibitory effects of auxin on abscission. These results indicated that SlHB15A mediates the antagonistic effect of auxin and JA-Ile during tomato pedicel abscission, while auxin inhibits abscission through the SlHB15A-SlJAR1 module.


Asunto(s)
Isoleucina , Solanum lycopersicum , Ciclopentanos/metabolismo , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos/metabolismo , Isoleucina/análogos & derivados , Isoleucina/metabolismo , Solanum lycopersicum/metabolismo , Oxilipinas/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
7.
Physiol Plant ; 175(3): e13925, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37161507

RESUMEN

Type 2C protein phosphatases (PP2Cs) play key roles in regulating plant senescence and ripening. Here, we discovered a subfamily F PP2C, SlPP2C, associated with leaf senescence through transcriptome analysis. The gene expression, protein accumulation, and promoter activity of SlPP2C all gradually increased along with the progression of leaf and flower senescence and fruit ripening in tomato. Also, the expression of SlPP2C was highly up-regulated by the senescent-inducible hormone treatments, showing more sensitivity to ethylene (ETH) and abscisic acid (ABA). Meanwhile, SlPP2C RNA interference (RNAi) tomato transgenic lines showed obvious delayed senescence and ripening phenotypes of leaves, flowers, and fruits. SlPP2C RNAi lines delayed leaf senescence with higher chlorophyll fluorescence and content, and lower expressions of senescence marker genes (SlSGR1 and SlSAG12) compared to WT. SlPP2C RNAi lines clearly delayed flower senescence time; it was at least twice longer than WT. SlPP2C RNAi lines delayed fruit ripening, exhibiting higher firmness and lower polygalacturonase activity compared to WT. In addition, we proved that SlPP2C is unable to interact with any of the ABA receptors (SlPYLs). Together, the results demonstrate that SlPP2C is a senescence-related and ripening-related gene.


Asunto(s)
Senescencia de la Planta , Solanum lycopersicum , Solanum lycopersicum/genética , Frutas/metabolismo , Ácido Abscísico/farmacología , Ácido Abscísico/metabolismo , Etilenos/metabolismo , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas
8.
Int J Mol Sci ; 24(11)2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37298137

RESUMEN

Cold stress usually causes the abscission of floral organs and a decline in fruit setting rate, seriously reducing tomato yield. Auxin is one of the key hormones that affects the abscission of plant floral organs; the YUCCA (YUC) family is a key gene in the auxin biosynthesis pathway, but there are few research reports on the abscission of tomato flower organs. This experiment found that, under low temperature stress, the expression of auxin synthesis genes increased in stamens but decreased in pistils. Low temperature treatment decreased pollen vigor and pollen germination rate. Low night temperature reduced the tomato fruit setting rate and led to parthenocarpy, and the treatment effect was most obvious in the early stage of tomato pollen development. The abscission rate of tomato pTRV-Slfzy3 and pTRV-Slfzy5 silenced plants was higher than that of the control, which is the key auxin synthesis gene affecting the abscission rate. The expression of Solyc07g043580 was down-regulated after low night temperature treatment. Solyc07g043580 encodes the bHLH-type transcription factor SlPIF4. It has been reported that PIF4 regulates the expression of auxin synthesis and synthesis genes, and is a key protein in the interaction between low temperature stress and light in regulating plant development.


Asunto(s)
Solanum lycopersicum , Solanum lycopersicum/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Temperatura , Ácidos Indolacéticos/metabolismo , Frutas/genética , Frutas/metabolismo , Regulación de la Expresión Génica de las Plantas , Flores/metabolismo
9.
New Phytol ; 233(5): 2127-2143, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34936108

RESUMEN

Plants have evolved sophisticated regulatory networks to cope with dynamically changing light and temperature environments during day-night and seasonal cycles. However, the integration mechanisms of light and low temperature remain largely unclear. Here, we show that low red : far-red ratio (LR : FR) induces FAR-RED ELONGATED HYPOCOTYL3 (SlFHY3) transcription under cold stress in tomato (Solanum lycopersicum). Reverse genetic approaches revealed that knocking out SlFHY3 decreases myo-inositol accumulation and increases cold susceptibility, whereas overexpressing SlFHY3 induces myo-inositol accumulation and enhances cold tolerance in tomato plants. SlFHY3 physically interacts with ELONGATED HYPOCOTYL5 (SlHY5) to promote the transcriptional activity of SlHY5 on MYO-INOSITOL-1-PHOSPHATE SYNTHASE 3 (SlMIPS3) and induce myo-inositol accumulation in tomato plants under cold stress. Disruption of SlHY5 and SlMIPS3 largely suppresses the cold tolerance of SlFHY3-overexpressing plants and myo-inositol accumulation in tomato. Furthermore, silencing of SlMIPS3 drastically reduces myo-inositol accumulation and compromises LR : FR-induced cold tolerance in tomato. Together, our results reveal a crucial role of SlFHY3 in LR : FR-induced cold tolerance in tomato and unravel a novel regulatory mechanism whereby plants integrate dynamic environmental light signals and internal cues (inositol biosynthesis) to induce and control cold tolerance in tomato plants.


Asunto(s)
Solanum lycopersicum , Frío , Regulación de la Expresión Génica de las Plantas , Inositol , Fototransducción , Solanum lycopersicum/genética
10.
Plant Physiol ; 185(4): 1829-1846, 2021 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-33638643

RESUMEN

Abscission of plant organs is induced by developmental signals and diverse environmental stimuli and involves multiple regulatory networks, including biotic or abiotic stress-impaired auxin flux in the abscission zone (AZ). Depletion of auxin activates AZ ethylene (ETH) production and triggers acceleration of abscission, a process that requires hydrogen peroxide (H2O2). However, the interaction between these networks and the underlying mechanisms that control abscission are poorly understood. Here, we found that expression of tonoplast intrinsic proteins, which belong to the aquaporin (AQP) family in the AZ was important for tomato (Solanum lycopersicum) pedicel abscission. Liquid chromatography-tandem mass spectrometry and in situ hybridization revealed that SlTIP1;1 was most abundant and specifically present in the tomato pedicel AZ. SlTIP1;1 localized in the plasma membrane and tonoplast. Knockout of SlTIP1;1 resulted in delayed abscission, whereas overexpression of SlTIP1;1 accelerated abscission. Further analysis indicated that SlTIP1;1 mediated abscission via gating of cytoplasmic H2O2 concentrations and osmotic water permeability (Pf). Elevated cytoplasmic levels of H2O2 caused a suppressed auxin signal in the early abscission stage and enhanced ETH production during abscission. Furthermore, we found that increasing Pf was required to enhance the turgor pressure to supply the break force for AZ cell separation. Moreover, we observed that SlERF52 bound directly to the SlTIP1;1 promoter to regulate its expression, demonstrating a positive loop in which cytoplasmic H2O2 activates ETH production, which activates SlERF52. This, in turn, induces SlTIP1;1, which leads to elevated cytoplasmic H2O2 and water influx.


Asunto(s)
Acuaporinas/metabolismo , Flores/crecimiento & desarrollo , Flores/genética , Solanum lycopersicum/crecimiento & desarrollo , Solanum lycopersicum/genética , Productos Agrícolas/genética , Productos Agrícolas/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/crecimiento & desarrollo
11.
Plant Physiol ; 186(2): 1288-1301, 2021 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-33711162

RESUMEN

In many fruiting plant species, flower abscission is induced by low light stress. Here, we elucidated how signaling mediated by the peptide INFLORESCENCE DEFICIENT IN ABSCISSION (IDA) controls low light-induced flower drop in tomato (Solanum lycopersicum). We analyzed the expression patterns of an IDA-Like gene (SlIDL6) during low light-induced flower abscission, and used tandem mass spectrometry to identify and characterize the mature SlIDL6 peptide. Tomato knockout lines were created to investigate the in vivo function of SlIDL6. In addition, yeast one-hybrid assays were used to investigate the binding of the SlWRKY17 transcription factor to the SlIDL6 promoter, and silencing of SlWRKY17 expression delayed low light-induced flower abscission. SlIDL6 was specifically expressed in the abscission zone and at high levels during low light-induced abscission and ethylene treatment. SlIDL6 knockout lines showed delayed low light-induced flower drop, and the application of SlIDL6 peptide accelerated abscission. Overexpression of SlIDL6 rescued the ida mutant phenotype in Arabidopsis (Arabidopsis thaliana), suggesting functional conservation between species. SlIDL6-mediated abscission was via an ethylene-independent pathway. We report a SlWRKY17-SlIDL6 regulatory module that functions in low light promoted abscission by increasing the expression of enzymes involved in cell wall remodeling and disassembly.


Asunto(s)
Etilenos/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas de Plantas/metabolismo , Transducción de Señal , Solanum lycopersicum/genética , Arabidopsis/genética , Arabidopsis/fisiología , Arabidopsis/efectos de la radiación , Pared Celular/metabolismo , Flores/genética , Flores/fisiología , Flores/efectos de la radiación , Inflorescencia/genética , Inflorescencia/fisiología , Inflorescencia/efectos de la radiación , Solanum lycopersicum/fisiología , Solanum lycopersicum/efectos de la radiación , Fenotipo , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
12.
J Pineal Res ; 73(2): e12810, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35620796

RESUMEN

Melatonin (MT) functions in removing reactive oxygen species (ROS) and delaying plant senescence, thereby acting as an antioxidant; however, the molecular mechanism underlying the specific action of MT is unclear. Herein, we used the mutant plants carrying the MT decomposition gene melatonin 3-hydroxylase (M3H) in tomato to elucidate the specific mechanism of action of MT. SlM3H-OE accelerated senescence by decreasing the content of endogenous MT in plants. SlM3H is a senescence-related gene that positively regulates aging. MT inhibited the expression of the senescence-related gene SlCV to scavenge ROS, induced stable chloroplast structure, and delayed leaf senescence. Simultaneously, MT weakened the interaction between SlCV and SlPsbO/SlCAT3, reduced ROS production in photosystem II, and promoted ROS elimination. In conclusion, MT regulates ROS homeostasis and delays leaf aging in tomato plants through SlCV expression modulation.


Asunto(s)
Melatonina , Solanum lycopersicum , Regulación de la Expresión Génica de las Plantas , Homeostasis , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Melatonina/farmacología , Hojas de la Planta/genética , Senescencia de la Planta , Especies Reactivas de Oxígeno/metabolismo
13.
Plant J ; 103(6): 2100-2118, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32573872

RESUMEN

Anther development and pollen tube elongation are key steps for pollination and fertilization. The timing and spatial distribution of reactive oxygen species (ROS) and programmed cell death are central to these processes, but the regulatory mechanism of ROS production is not well understood. Inflorescence deficient in abscission (IDA) is implicated in many plant development and responses to environmental stimuli. However, their role in reproductive development is still unknown. We generated tomato knockout lines (CR-slida) of an IDA homolog (SlIDA), which is expressed in the tapetum, septum and pollen tube, and observed a severe defect in male gametes. Further analysis indicated that there was a programmed cell death defect in the tapetum and septum and a failure of anther dehiscence in the CR-slida lines, likely related to insufficient ROS signal. Liquid chromatography-tandem mass spectrometry identified mature SlIDA as a 14-mer EPIP peptide, which was shown to be secreted, and a complementation experiment showed that application of a synthetic 14-mer EPIP peptide rescued the CR-slida defect and enhanced the ROS signal. Moreover, the application of the ROS scavengers diphenyleneiodonium or Mn-TMPP suppressed peptide function. Collectively, our results revealed that SlIDA plays an essential role in pollen development and pollen tube elongation by modulating ROS homeostasis.


Asunto(s)
Fertilización , Proteínas de Plantas/fisiología , Especies Reactivas de Oxígeno/metabolismo , Solanum lycopersicum/fisiología , Fertilización/fisiología , Flores/fisiología , Técnicas de Inactivación de Genes , Homeostasis , Solanum lycopersicum/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Tubo Polínico/fisiología
14.
J Exp Bot ; 71(1): 435-449, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31616940

RESUMEN

Soluble carbohydrates not only directly affect plant growth and development but also act as signal molecules in processes that enhance tolerance to cold stress. Raffinose family oligosaccharides (RFOs) are an example and play an important role in abiotic stress tolerance. This study aimed to determine whether galactinol, a key limiting factor in RFO biosynthesis, functions as a signal molecule in triggering cold tolerance. Exposure to low temperatures induces the expression of galactinol synthase (AnGolS1) in Ammopiptanthus nanus, a desert plant that survives temperatures between -30 °C to 47 °C. AnGolS1 has a greater catalytic activity than tomato galactinol synthase (SlGolS2). Moreover, SlGolS2 is expressed only at low levels. Expression of AnGolS1 in tomato enhanced cold tolerance and led to changes in the sugar composition of the seeds and seedlings. AnGolS1 transgenic tomato lines exhibited an enhanced capacity for ethylene (ET) signaling. The application of galactinol abolished the repression of the ET signaling pathway by 1-methylcyclopropene during seed germination. In addition, the expression of ERF transcription factors was increased. Galactinol may therefore act as a signal molecule affecting the ET pathway.


Asunto(s)
Respuesta al Choque por Frío/genética , Fabaceae/genética , Galactosiltransferasas/genética , Proteínas de Plantas/genética , Solanum lycopersicum/fisiología , Disacáridos/metabolismo , Fabaceae/enzimología , Galactosiltransferasas/metabolismo , Solanum lycopersicum/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo
15.
BMC Plant Biol ; 19(1): 233, 2019 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-31159738

RESUMEN

BACKGROUND: Auxin conjugates are hydrolyzed to release free auxin to ensure defined cellular auxin levels or gradients within tissues for proper development or response to environmental signals. The auxin concentration in the abscission zone (AZ) is thought to play an important role in mediating the abscission lag phase. RESULTS: In this study, the full cDNA sequences of seven tomato ILR1-like SlILL genes were identified and characterized, All SlILLs were found to have auxin conjugate hydrolysis activity. The effects of different auxin conjugates on abscission identified IAA-Ile as a candidate to determine the auxin conjugate and auxin conjugate hydrolysis functions in abscission. Treatment of pedicel explants with IAA-Ile for different times showed that application before 6 h could effectively delay abscission. IAA-Ile pre-incubation for 2 h was sufficient to inhibit abscission. These results showed that there is not sufficient auxin conjugates in the AZ to inhibit abscission, and the optimal time to inhibit abscission by the application of exogenous auxin conjugates is before 6 h. Treatment with cycloheximide (CHX, a protein biosynthesis inhibitor) indicated that de novo synthesis of auxin conjugate hydrolases is also required to delay abscission. During abscission, SlILL1, 5, and 6 showed abscission-related gene expression patterns, and SlILL1, 3, 5, 6, and 7 showed increasing expression trends, which collectively might contribute to delay abscission. Silencing the expression of SlILL1, 3, 5, 6, and 7 using virus-induced gene silencing showed that SlILL1, 5, and 6 are major mediators of abscission in tomato. CONCLUSIONS: In the process of abscission, auxin inhibition is concentration dependent, and the concentration of auxin in the AZ was regulated by hydrolyzed auxin conjugates. SlILR1, 5, and 6 play a key role in flower pedicel abscission.


Asunto(s)
Flores/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Hidrolasas/metabolismo , Ácidos Indolacéticos/metabolismo , Inhibidores de la Síntesis de la Proteína/farmacología , Solanum lycopersicum/genética , Cicloheximida/farmacología , Flores/genética , Solanum lycopersicum/enzimología
16.
Int J Mol Sci ; 20(12)2019 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-31234448

RESUMEN

The number of locules in tomato affects fruit size, shape, and the incidence of malformation. Low temperature increases locule number and the incidences of malformation in tomato plants. In this study, three flower bud developmental stages (pre-flower bud differentiation, sepal and petal primordium formation, and carpel primordium formation) under different night temperatures (10, 15, and 20 °C) were used to analyze the reason behind locule number change using an RNA sequencing (RNA-seq) approach, Quantitative real-time PCR (qRT-PCR), and ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS). The results showed that the "plant hormone signal transduction", "starch and sucrose metabolism", and "diterpenoid biosynthesis" categories were remarkably activated during flower bud differentiation. Transcripts of gibberellin (GA)-related genes and endogenous levels of GAs were analyzed, and it was discovered that SlGA2ox genes were significantly downregulated and bioactive GA1 and GA4 accumulated at lower overnight temperature. Exogenous application of bioactive GA1, GA4, and PAC (paclobutrazol) showed that GA1 and GA4 increased the locule number, while PAC decreased the locule number. Taken together, our results suggest that lower overnight temperature reduced the expression of SlGA2ox genes, leading to GA1 and GA4 accumulation, thereby increasing locule number in tomato.


Asunto(s)
Giberelinas/metabolismo , Solanum lycopersicum/crecimiento & desarrollo , Frío , Flores/genética , Flores/crecimiento & desarrollo , Flores/metabolismo , Regulación de la Expresión Génica de las Plantas , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Fotoperiodo , Proteínas de Plantas/genética
17.
J Exp Bot ; 69(5): 1011-1025, 2018 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-29365162

RESUMEN

Ethylene perception is regulated by receptors, and the downstream protein CONSTITUTIVE TRIPLE RESPONSE1 is a key suppressor of ethylene signalling. The non-conserved tomato (Solanum lycopersicum) microRNA1917 (Sly-miR1917) mediates degradation of SlCTR4 splice variants (SlCTR4sv) but the molecular details of this pathway remain unknown. Sly-miR1917 and the targeted SlCTR4sv are ubiquitously expressed in all tomato organs. Overexpression of Sly-miR1917 enhances ethylene responses, including the triple response in etiolated seedlings, in the absence of ethylene, as well as epinastic petiole growth, accelerated pedicel abscission, and fruit ripening. Enhanced ethylene signalling in Sly-miR1917-overexpressing plants (1917-OE) is accompanied by up-regulation of ethylene biosynthesis and signalling genes, and increased ethylene emission. These phenotypes were recovered by repressing the positive ethylene regulator EIN2. Moreover, the Sly-miR1917-targeted SlCTR4 splice variant SlCTR4sv3, expressed specifically in the abscission zone, exhibited the opposite expression pattern to Sly-miR1917. Complementation of the Arabidopsis thaliana ctr-1 mutant and yeast two-hybrid and bimolecular fluorescence complementation assays suggested that SlCTR4sv3 functions in ethylene signalling. Co-expression of Sly-miR1917 and SlCTR4sv3 in Nicotiana benthamiana further suggested that Sly-miR1917 cleaves SlCTR4sv3 in vivo. Database homology searching revealed a Solanum tuberosum CTR-like splice variant containing a Sly-miR1917 binding sequence, and a homologue of mature Sly-miR1917 in potato, indicating a conserved function for miR1917 and the regulatory miRNA-mediated ethylene network in solanaceous species.


Asunto(s)
Etilenos/metabolismo , Regulación de la Expresión Génica de las Plantas , MicroARNs/genética , Proteínas Quinasas/genética , Solanum lycopersicum/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Solanum lycopersicum/metabolismo , MicroARNs/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Proteínas Quinasas/metabolismo , Empalme del ARN , ARN de Planta/genética , ARN de Planta/metabolismo
18.
Plant Mol Biol ; 92(3): 313-36, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27542006

RESUMEN

Solanum lycopersicum auxin response factor 10 (SlARF10) is post-transcriptionally regulated by Sl-miR160. Overexpression of a Sl-miR160-resistant SlARF10 (mSlARF10) resulted in narrower leaflet blades with larger stomata but lower densities. 35S:mSlARF10-6 plants with narrower excised leaves had greater water loss, which was in contrast to the wild type (WT). Further analysis revealed that the actual water loss was not consistent with the calculated stomatal water loss in 35S:mSlARF10-6 and the WT under the dehydration treatment, indicating that there is a difference in hydraulic conductance. Pretreatment with abscisic acid (ABA) and HgCl2 confirmed higher hydraulic conductance in 35S:mSlARF10, which is related to the larger stomatal size and higher activity of aquaporins (AQPs). Under ABA treatment, 35S:mSlARF10-6 showed greater sensitivity, and the stomata closed rapidly. Screening by RNA sequencing revealed that five AQP-related genes, fourteen ABA biosynthesis/signal genes and three stomatal development genes were significantly altered in 35S:mSlARF10-6 plants, and this result was verified by qRT-PCR. The promoter analysis showed that upregulated AQPs contain AuxRE and ABRE, implying that these elements may be responsible for the high expression levels of AQPs in 35S:mSlARF10-6. The three most upregulated AQPs (SlTIP1-1-like, SlPIP2;4 and SlNIP-type-like) were chosen to confirm AuxRE and ABRE function. Promoters transient expression demonstrated that the SlPIP2;4 and SlNIP-type-like AuxREs and SlPIP2;4 and SlTIP1-1-like ABREs could significantly enhance the expression of the GUS reporter in 35S:mSlARF10-6, confirming that AuxRE and ABRE may be the main factors inducing the expression of AQPs. Additionally, two upregulated transcription factors in 35S:mSlARF10-6, SlARF10 and SlABI5-like were shown to directly bind to those elements in an electromobility shift assay and a yeast one-hybrid assay. Furthermore, transient expression of down-regulated ARF10 or up-regulated ABI5 in tomato leaves demonstrated that ARF10 is the direct factor for inducing the water loss in 35S:mSlARF10-6. Here, we show that although SlARF10 increased the ABA synthesis/signal response by regulating stomatal aperture to mitigate water loss, SlARF10 also influenced stomatal development and AQP expression to affect water transport, and both act cooperatively to control the loss of leaf water in tomato. Therefore, this study uncovers a previously unrecognized leaf water loss regulatory factor and a network for coordinating auxin and ABA signalling in this important process. In an evolutionary context, miR160 regulates ARF10 to maintain the water balance in the leaf, thus ensuring normal plant development and environmental adaptation.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Ácido Abscísico/farmacología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Solanum lycopersicum/efectos de los fármacos , Cloruro de Mercurio/farmacología , Reguladores del Crecimiento de las Plantas/farmacología , Hojas de la Planta/efectos de los fármacos , Estomas de Plantas/efectos de los fármacos , Estomas de Plantas/genética , Regiones Promotoras Genéticas/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Agua/metabolismo
19.
Planta ; 242(4): 963-84, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26021606

RESUMEN

MAIN CONCLUSION: We constructed small RNA and degradome sequencing libraries to identify miRNAs and targets involved in tomato pedicel abscission, and confirmed their roles via quantitative real-time PCR. MicroRNAs (miRNAs) are endogenous small RNAs which play crucial negatively regulatory roles at both the transcriptional and post-transcriptional levels in plants; however, limited knowledge is available on the expression profiles of miRNAs and their target genes during tomato pedicel abscission. Taking advantage of small RNA (sRNA) and degradome sequencing technology, a total of 56 known and 11 novel candidate miRNAs targeting 223 mRNA genes were confirmed during pedicel abscission. Gene ontology annotation and KEGG pathway analysis showed that these target genes were significantly enriched in intracellular, membrane-bounded organelle-related biological processes as well as in metabolic, plant-pathogen interaction and hormone signaling pathways. We screened 17 miRNA/target pairs for further analysis and performed quantitative real-time PCR to identify the roles. Cluster analysis of selected miRNAs revealed that the expression profiles of miRNAs varied in different stages of abscission and could be impacted by ethylene treatment. In the present study, the correlations between miRNAs and targets suggested a complex regulatory network of miRNA-mediated target interaction during pedicel abscission. Additionally, the expression profiles of miRNAs and their targets changed by ethylene might be a considerable reason why ethylene promotes pedicel abscission. Our study provides new insights into the expression and regulatory profiles of miRNAs during tomato pedicel abscission.


Asunto(s)
MicroARNs/genética , ARN de Planta/genética , Solanum lycopersicum/genética , Análisis de Secuencia de ARN
20.
J Exp Bot ; 66(13): 3977-90, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25948703

RESUMEN

2,4-Dichlorophenoxyacetic acid (2,4-D), an important plant growth regulator, is the herbicide most commonly used worldwide to control weeds. However, broad-leaf fruits and vegetables are extremely sensitive to herbicides, which can cause damage and result in lost crops when applied in a manner inconsistent with the directions. Despite detailed knowledge of the mechanism of 2,4-D, the regulation of auxin signalling is still unclear. For example, although the major mediators of auxin signalling, including auxin/indole acetic acid (AUX/IAA) proteins and auxin response factors (ARFs), are known to mediate auxinic herbicides, the underlying mechanisms are still unclear. In this study, the effects of 2,4-D on AUX/IAA gene expression in tomato were investigated, and the two most notably up-regulated genes, SlIAA15 and SlIAA29, were selected for further study. Western blotting revealed the substantial accumulation of both SlIAA15 and SlIAA29, and the expression levels of the corresponding genes were increased following abscisic acid (ABA) and ethylene treatment. Overexpressing SlIAA15, but not SlIAA29, induced a 2,4-D herbicide damage phenotype. The 35S::SlIAA15 line exhibited a strong reduction in leaf stomatal density and altered expression of some R2R3 MYB genes that are putatively involved in the regulation of stomatal differentiation. Further study revealed that root elongation in 35S::SlIAA15 was sensitive to ABA treatment, and was most probably due to the altered expression of an ABA signal transduction gene. In addition, the altered auxin sensitivities of SlIAA15 transformants were also explored. These results suggested that SlIAA15 plays an important role in determining the effects of the herbicide 2,4-D.


Asunto(s)
Ácido 2,4-Diclorofenoxiacético/farmacología , Ácido Abscísico/metabolismo , Herbicidas/farmacología , Proteínas de Plantas/metabolismo , Transducción de Señal/efectos de los fármacos , Solanum lycopersicum/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genes del Desarrollo , Genes de Plantas , Solanum lycopersicum/anatomía & histología , Solanum lycopersicum/efectos de los fármacos , Solanum lycopersicum/genética , Familia de Multigenes , Fenotipo , Hojas de la Planta/anatomía & histología , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/genética , Proteínas de Plantas/genética , Estomas de Plantas/efectos de los fármacos , Estomas de Plantas/genética , Estomas de Plantas/crecimiento & desarrollo , Plantas Modificadas Genéticamente , Interferencia de ARN , Reacción en Cadena en Tiempo Real de la Polimerasa , Análisis de Secuencia de Proteína , Transducción de Señal/genética , Transformación Genética/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA