RESUMEN
In recent years, donor-acceptor (D-A)-type conjugated polymers have been widely used in the field of organic solar cells (OSCs) and electrochromism (EC). Considering the poor solubility of D-A conjugated polymers, the solvents used in material processing and related device preparation are mostly toxic halogenated solvents, which have become the biggest obstacle to the future commercial process of the OSC and EC field. Herein, we designed and synthesized three novel D-A conjugated polymers, PBDT1-DTBF, PBDT2-DTBF, and PBDT3-DTBF, by introducing polar oligo (ethylene glycol) (OEG) side chains of different lengths in the donor unit benzodithiophene (BDT) as side chain modification. Studies on solubility, optics, electrochemical, photovoltaic and electrochromic properties are conducted, and the influence of the introduction of OEG side chains on its basic properties is also discussed. Studies on solubility and electrochromic properties show unusual trends that need further research. However, since PBDT-DTBF-class polymers and acceptor IT-4F failed to form proper morphology under the low-boiling point solvent THF solvent processing, the photovoltaic performance of prepared devices is not ideal. However, films with THF as processing solvent showed relatively desirable electrochromic properties and films cast from THF display higher CE than CB as the solvent. Therefore, this class of polymers has application feasibility for green solvent processing in the OSC and EC fields. The research provides an idea for the design of green solvent-processable polymer solar cell materials in the future and a meaningful exploration of the application of green solvents in the field of electrochromism.
RESUMEN
Phytoremediation is recognized as an environmentally friendly technique. However, the low biomass production, high time consumption, and exposure to combined toxic stress from contaminated media weaken the potential of phytoremediation. As a class of plant-beneficial microorganisms, arbuscular mycorrhizal fungi (AMF) can promote plant nutrient uptake, improve plant habitats, and regulate abiotic stresses, and the utilization of AMF to enhance phytoremediation is considered to be an effective way to enhance the remediation efficiency. In this paper, we searched 520 papers published during the period 2000-2023 on the topic of AMF-assisted phytoremediation from the Web of Science core collection database. We analyzed the author co-authorship, country, and keyword co-occurrence clustering by VOSviewer. We summarized the advances in research and proposed prospective studies on AMF-assisted phytoremediation. The bibliometric analyses showed that heavy metal, soil, stress tolerance, and growth promotion were the research hotspots. AMF-plant symbiosis has been used in water and soil in different scenarios for the remediation of heavy metal pollution and organic pollution, among others. The potential mechanisms of pollutant removal in which AMF are directly involved through hyphal exudate binding and stabilization, accumulation in their structures, and nutrient exchange with the host plant are highlighted. In addition, the tolerance strategies of AMF through influencing the subcellular distribution of contaminants as well as chemical form shifts, activation of plant defenses, and induction of differential gene expression in plants are presented. We proposed that future research should screen anaerobic-tolerant AMF strains, examine bacterial interactions with AMF, and utilize AMF for combined pollutant removal to accelerate practical applications.