Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 724
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Cell ; 160(5): 856-869, 2015 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-25684365

RESUMEN

Homologous recombination (HR) mediates the exchange of genetic information between sister or homologous chromatids. During HR, members of the RecA/Rad51 family of recombinases must somehow search through vast quantities of DNA sequence to align and pair single-strand DNA (ssDNA) with a homologous double-strand DNA (dsDNA) template. Here, we use single-molecule imaging to visualize Rad51 as it aligns and pairs homologous DNA sequences in real time. We show that Rad51 uses a length-based recognition mechanism while interrogating dsDNA, enabling robust kinetic selection of 8-nucleotide (nt) tracts of microhomology, which kinetically confines the search to sites with a high probability of being a homologous target. Successful pairing with a ninth nucleotide coincides with an additional reduction in binding free energy, and subsequent strand exchange occurs in precise 3-nt steps, reflecting the base triplet organization of the presynaptic complex. These findings provide crucial new insights into the physical and evolutionary underpinnings of DNA recombination.


Asunto(s)
Recombinación Homóloga , Recombinasa Rad51/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Ciclo Celular/metabolismo , Emparejamiento Cromosómico , Reparación del ADN , ADN de Cadena Simple/metabolismo , Proteínas de Unión al ADN/metabolismo , Saccharomyces cerevisiae/enzimología , Alineación de Secuencia
2.
Genes Dev ; 33(17-18): 1191-1207, 2019 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-31371435

RESUMEN

The vast majority of eukaryotes possess two DNA recombinases: Rad51, which is ubiquitously expressed, and Dmc1, which is meiosis-specific. The evolutionary origins of this two-recombinase system remain poorly understood. Interestingly, Dmc1 can stabilize mismatch-containing base triplets, whereas Rad51 cannot. Here, we demonstrate that this difference can be attributed to three amino acids conserved only within the Dmc1 lineage of the Rad51/RecA family. Chimeric Rad51 mutants harboring Dmc1-specific amino acids gain the ability to stabilize heteroduplex DNA joints with mismatch-containing base triplets, whereas Dmc1 mutants with Rad51-specific amino acids lose this ability. Remarkably, RAD-51 from Caenorhabditis elegans, an organism without Dmc1, has acquired "Dmc1-like" amino acids. Chimeric C. elegans RAD-51 harboring "canonical" Rad51 amino acids gives rise to toxic recombination intermediates, which must be actively dismantled to permit normal meiotic progression. We propose that Dmc1 lineage-specific amino acids involved in the stabilization of heteroduplex DNA joints with mismatch-containing base triplets may contribute to normal meiotic recombination.


Asunto(s)
Aminoácidos/metabolismo , Recombinasa Rad51/química , Recombinasa Rad51/metabolismo , Recombinasas/química , Recombinasas/metabolismo , Recombinación Genética/genética , Aminoácidos/genética , Animales , Disparidad de Par Base , Caenorhabditis elegans/enzimología , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Secuencia Conservada , Mutación , Recombinasa Rad51/genética , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Recombinasas/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
4.
EMBO J ; 41(4): e108290, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35028974

RESUMEN

Nucleotide metabolism fuels normal DNA replication and is also primarily targeted by the DNA replication checkpoint when replication stalls. To reveal a comprehensive interconnection between genome maintenance and metabolism, we analyzed the metabolomic changes upon replication stress in the budding yeast S. cerevisiae. We found that upon treatment of cells with hydroxyurea, glucose is rapidly diverted to the oxidative pentose phosphate pathway (PPP). This effect is mediated by the AMP-dependent kinase, SNF1, which phosphorylates the transcription factor Mig1, thereby relieving repression of the gene encoding the rate-limiting enzyme of the PPP. Surprisingly, NADPH produced by the PPP is required for efficient recruitment of replication protein A (RPA) to single-stranded DNA, providing the signal for the activation of the Mec1/ATR-Rad53/CHK1 checkpoint signaling kinase cascade. Thus, SNF1, best known as a central energy controller, determines a fast mode of replication checkpoint activation through a redox mechanism. These findings establish that SNF1 provides a hub with direct links to cellular metabolism, redox, and surveillance of DNA replication in eukaryotes.


Asunto(s)
Replicación del ADN , Proteínas Serina-Treonina Quinasas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Quinasa de Punto de Control 2/genética , Quinasa de Punto de Control 2/metabolismo , Replicación del ADN/efectos de los fármacos , ADN de Cadena Simple/metabolismo , Glucosa/genética , Glucosa/metabolismo , Glucólisis/fisiología , Hidroxiurea , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , NADP/metabolismo , Vía de Pentosa Fosfato , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , Proteína de Replicación A/genética , Proteína de Replicación A/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Saccharomyces cerevisiae/efectos de los fármacos , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
5.
Plant J ; 115(3): 772-787, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37186341

RESUMEN

Maize (Zea mays L.) is a major staple crop worldwide, and during modern maize breeding, cultivars with increased tolerance to high-density planting and higher yield per plant have contributed significantly to the increased yield per unit land area. Systematically identifying key agronomic traits and their associated genomic changes during modern maize breeding remains a significant challenge because of the complexity of genetic regulation and the interactions of the various agronomic traits, with most of them being controlled by numerous small-effect quantitative trait loci (QTLs). Here, we performed phenotypic and gene expression analyses for a set of 137 elite inbred lines of maize from different breeding eras in China. We found four yield-related traits are significantly improved during modern maize breeding. Through gene-clustering analyses, we identified four groups of expressed genes with distinct trends of expression pattern change across the historical breeding eras. In combination with weighted gene co-expression network analysis, we identified several candidate genes regulating various plant architecture- and yield-related agronomic traits, such as ZmARF16, ZmARF34, ZmTCP40, ZmPIN7, ZmPYL10, ZmJMJ10, ZmARF1, ZmSWEET15b, ZmGLN6 and Zm00001d019150. Further, by combining expression quantitative trait loci (eQTLs) analyses, correlation coefficient analyses and population genetics, we identified a set of candidate genes that might have been under selection and contributed to the genetic improvement of various agronomic traits during modern maize breeding, including a number of known key regulators of plant architecture, flowering time and yield-related traits, such as ZmPIF3.3, ZAG1, ZFL2 and ZmBES1. Lastly, we validated the functional variations in GL15, ZmPHYB2 and ZmPYL10 that influence kernel row number, flowering time, plant height and ear height, respectively. Our results demonstrates the effectiveness of our combined approaches for uncovering key candidate regulatory genes and functional variation underlying the improvement of important agronomic traits during modern maize breeding, and provide a valuable genetic resource for the molecular breeding of maize cultivars with tolerance for high-density planting.


Asunto(s)
Fitomejoramiento , Sitios de Carácter Cuantitativo , Zea mays , Perfilación de la Expresión Génica , Sitios de Carácter Cuantitativo/genética , Variación Genética , Zea mays/genética , Zea mays/metabolismo
6.
BMC Genomics ; 25(1): 220, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38413895

RESUMEN

BACKGROUND: The appropriate mineral nutrients are essential for sheep growth and reproduction. However, traditional grazing sheep often experience mineral nutrient deficiencies, especially copper (Cu), due to inadequate mineral nutrients from natural pastures. RESULTS: The results indicated that dietary Cu deficiency and supplementation significantly reduced and elevated liver concentration of Cu, respectively (p < 0.05). FOXO3, PLIN1, ACTN2, and GHRHR were identified as critical genes using the weighted gene co-expression network analysis (WGCNA), quantitative real-time polymerase chain reaction (qRT-PCR), and receiver operating characteristic curve (ROC) validation as potential biomarkers for evaluating Cu status in grazing sheep. Combining these critical genes with gene functional enrichment analysis, it was observed that dietary Cu deficiency may impair liver regeneration and compromise ribosomal function. Conversely, dietary Cu supplementation may enhance ribosomal function, promote lipid accumulation, and stimulate growth and metabolism in grazing sheep. Metabolomics analysis indicated that dietary Cu deficiency significantly decreased the abundance of metabolites such as cholic acid (p < 0.05). On the other hand, dietary Cu supplementation significantly increased the abundance of metabolites such as palmitic acid (p < 0.05). Integrative analysis of the transcriptome and metabolome revealed that dietary Cu deficiency may reduce liver lipid metabolism while Cu supplementation may elevate it in grazing sheep. CONCLUSIONS: The Cu content in diets may have an impact on hepatic lipid metabolism in grazing sheep. These findings provide new insights into the consequences of dietary Cu deficiency and supplementation on sheep liver and can provide valuable guidance for herders to rationalize the use of mineral supplements.


Asunto(s)
Cobre , Hígado , Ovinos , Animales , Cobre/farmacología , Hígado/metabolismo , Suplementos Dietéticos , Minerales/metabolismo , Perfilación de la Expresión Génica , Expresión Génica
7.
BMC Genomics ; 25(1): 113, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38273232

RESUMEN

The corpora allata-corpora cardiaca (CA-CC) is an endocrine gland complex that regulates mosquito development and reproduction through the synthesis of juvenile hormone (JH). Epoxidase (Epox) is a key enzyme in the production of JH. We recently utilized CRISPR/Cas9 to establish an epoxidase-deficient (epox-/-) Aedes aegypti line. The CA from epox-/- mutants do not synthesize epoxidated JH III but methyl farneosate (MF), a weak agonist of the JH receptor, and therefore have reduced JH signalling. Illumina sequencing was used to examine the differences in gene expression between the CA-CC from wild type (WT) and epox-/- adult female mosquitoes. From 18,034 identified genes, 317 were significantly differentially expressed. These genes are involved in many biological processes, including the regulation of cell proliferation and apoptosis, energy metabolism, and nutritional uptake. In addition, the same CA-CC samples were also used to examine the microRNA (miRNA) profiles of epox-/- and WT mosquitoes. A total of 197 miRNAs were detected, 24 of which were differentially regulated in epox-/- mutants. miRNA binding sites for these particular miRNAs were identified using an in silico approach; they target a total of 101 differentially expressed genes. Our results suggest that a lack of epoxidase, besides affecting JH synthesis, results in the diminishing of JH signalling that have significant effects on Ae. aegypti CA-CC transcriptome profiles, as well as its miRNA repertoire.


Asunto(s)
Aedes , MicroARNs , Animales , Femenino , Hormonas Juveniles/metabolismo , Aedes/genética , Aedes/metabolismo , Corpora Allata/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Expresión Génica
8.
Cancer Sci ; 115(6): 1749-1762, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38508217

RESUMEN

N6-Methyladenosine (m6A) is a important process regulating gene expression post-transcriptionally. Programmed death ligand 1 (PD-L1) is a major immune inhibitive checkpoint that facilitates immune evasion and is expressed in tumor cells. In this research we discovered that Wilms' tumor 1-associated protein (WTAP) degradation caused by ubiquitin-mediated cleavage in cancer cells (colorectal cancer, CRC) under hypoxia was inhibited by Pumilio homolog 1 (PUM1) directly bound to WTAP. WTAP enhanced PD-L1 expression in a way that was m6A-dependent. m6A "reader," Insulin-like growth factor 2 mRNA-binding protein 2 (IGF2BP2) identified methylated PD-L1 transcripts and subsequently fixed its mRNA. Additionally, we found that T-cell proliferation and its cancer cell-killing effects were prevented by overexpression of WTAP in vitro and in vivo. Overexpression prevented T cells from proliferating and killing CRC by maintaining the expression of PD-L1. Further evidence supporting the WTAP-PD-L1 regulatory axis was found in human CRC and organoid tissues. Tumors with high WTAP levels appeared more responsive to anti-PD1 immunotherapy, when analyzing samples from patients undergoing treatment. Overall, our findings demonstrated a novel PD-L1 regulatory mechanism by WTAP-induced mRNA epigenetic regulation and the possible application of targeting WTAP as immunotherapy for tumor hypoxia.


Asunto(s)
Adenosina , Antígeno B7-H1 , Neoplasias Colorrectales , Humanos , Adenosina/análogos & derivados , Adenosina/metabolismo , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/inmunología , Neoplasias Colorrectales/metabolismo , Antígeno B7-H1/metabolismo , Antígeno B7-H1/genética , Animales , Ratones , Línea Celular Tumoral , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Linfocitos T/inmunología , Linfocitos T/metabolismo , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Factores de Empalme de ARN/genética , Factores de Empalme de ARN/metabolismo , Femenino , Hipoxia Tumoral/genética , Proteínas de Ciclo Celular
9.
Cardiovasc Diabetol ; 23(1): 19, 2024 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-38195474

RESUMEN

AIMS: Diabetic cardiomyopathy (DCM) is a major cause of mortality in patients with diabetes, and the potential strategies for treating DCM are insufficient. Melatonin (Mel) has been shown to attenuate DCM, however, the underlying mechanism remains unclear. The role of vascular endothelial growth factor-B (VEGF-B) in DCM is little known. In present study, we aimed to investigate whether Mel alleviated DCM via regulation of VEGF-B and explored its underlying mechanisms. METHODS AND RESULTS: We found that Mel significantly alleviated cardiac dysfunction and improved autophagy of cardiomyocytes in type 1 diabetes mellitus (T1DM) induced cardiomyopathy mice. VEGF-B was highly expressed in DCM mice in comparison with normal mice, and its expression was markedly reduced after Mel treatment. Mel treatment diminished the interaction of VEGF-B and Glucose-regulated protein 78 (GRP78) and reduced the interaction of GRP78 and protein kinase RNA -like ER kinase (PERK). Furthermore, Mel increased phosphorylation of PERK and eIF2α, then up-regulated the expression of ATF4. VEGF-B-/- mice imitated the effect of Mel on wild type diabetic mice. Interestingly, injection with Recombinant adeno-associated virus serotype 9 (AAV9)-VEGF-B or administration of GSK2656157 (GSK), an inhibitor of phosphorylated PERK abolished the protective effect of Mel on DCM. Furthermore, rapamycin, an autophagy agonist displayed similar effect with Mel treatment; while 3-Methyladenine (3-MA), an autophagy inhibitor neutralized the effect of Mel on high glucose-treated neonatal rat ventricular myocytes. CONCLUSIONS: These results demonstrated that Mel attenuated DCM via increasing autophagy of cardiomyocytes, and this cardio-protective effect of Mel was dependent on VEGF-B/GRP78/PERK signaling pathway.


Asunto(s)
Diabetes Mellitus Experimental , Cardiomiopatías Diabéticas , Melatonina , Humanos , Ratones , Ratas , Animales , Cardiomiopatías Diabéticas/tratamiento farmacológico , Cardiomiopatías Diabéticas/etiología , Cardiomiopatías Diabéticas/prevención & control , Miocitos Cardíacos , Factor B de Crecimiento Endotelial Vascular , Melatonina/farmacología , Chaperón BiP del Retículo Endoplásmico , Diabetes Mellitus Experimental/tratamiento farmacológico , Transducción de Señal , Autofagia , Glucosa
10.
Toxicol Appl Pharmacol ; 487: 116957, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38735590

RESUMEN

Heart failure is associated with histone deacetylase (HDAC) regulation of gene expression, the inhibition of which is thought to be beneficial for heart failure therapy. Here, we explored the cardioprotective effects and underlying mechanism of a novel selenium-containing HDAC inhibitor, Se-SAHA, on isoproterenol (ISO)-induced heart failure. We found that pretreatment with Se-SAHA attenuated ISO-induced cardiac hypertrophy and fibrosis in neonatal rat ventricular myocytes (NRVMs). Se-SAHA significantly attenuated the generation of ISO-induced reactive oxygen species (ROS) and restored the expression levels of superoxide dismutase 2 (SOD2) and heme oxygenase-1 (HO-1) in vitro. Furthermore, Se-SAHA pretreatment prevented the accumulation of autophagosomes. Se-SAHA reversed the high expression of HDAC1 and HDAC6 induced by ISO incubation. However, after the addition of the HDAC agonist, the effect of Se-SAHA on blocking autophagy was inhibited. Using ISO-induced mouse models, cardiac ventricular contractile dysfunction, hypertrophy, and fibrosis was reduced treated by Se-SAHA. In addition, Se-SAHA inhibited HDAC1 and HDAC6 overexpression in ISO-treated mice. Se-SAHA treatment significantly increased the activity of SOD2 and improved the ability to eliminate free radicals. Se-SAHA hindered the excessive levels of the microtubule-associated protein 1 light chain 3 (LC3)-II and Beclin-1 in heart failure mice. Collectively, our results indicate that Se-SAHA exerts cardio-protection against ISO-induced heart failure via antioxidative stress and autophagy inhibition.


Asunto(s)
Autofagia , Insuficiencia Cardíaca , Inhibidores de Histona Desacetilasas , Isoproterenol , Ratones Endogámicos C57BL , Miocitos Cardíacos , Estrés Oxidativo , Ratas Sprague-Dawley , Animales , Isoproterenol/toxicidad , Insuficiencia Cardíaca/inducido químicamente , Insuficiencia Cardíaca/prevención & control , Insuficiencia Cardíaca/patología , Insuficiencia Cardíaca/tratamiento farmacológico , Autofagia/efectos de los fármacos , Inhibidores de Histona Desacetilasas/farmacología , Estrés Oxidativo/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/patología , Miocitos Cardíacos/metabolismo , Masculino , Ratas , Ratones , Superóxido Dismutasa/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Antioxidantes/farmacología , Fibrosis , Células Cultivadas , Cardiomegalia/inducido químicamente , Cardiomegalia/prevención & control , Cardiomegalia/patología
11.
Gastrointest Endosc ; 99(3): 387-397.e6, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37858760

RESUMEN

BACKGROUND AND AIMS: The Zhongshan colorectal endoscopic submucosal dissection (CR-ESD) score model was proposed to grade the technical difficulty of CR-ESD. The objective of this study was to prospectively validate and update the score model. METHODS: A multicenter prospective cohort analysis of CR-ESD was conducted. Individual data on patients, lesions, and outcomes of CR-ESD were used to validate the original model and further refine the difficulty of the prediction model. Data were randomly divided into discovery and internal validation cohorts. A multivariate Cox regression analysis was conducted on the discovery cohort to develop an updated risk-scoring system, which was then validated. RESULTS: Five hundred forty-eight patients with 565 colorectal lesions treated by ESD from 4 hospitals were included. In the prospective validation cohort, the area under the receiver-operating characteristic (ROC) curve for the original model was .707. Six risk factors were identified and assigned point values: tumor size (2 points for 30-50 mm, 3 points for ≥50 mm), at least two-thirds circumference of the lesion (3 points), tumor location in the cecum (2 points) or flexure (2 points), laterally spreading tumor-nongranular lesions (1 point), preceding biopsy sampling (1 point), and NBI International Colorectal Endoscopic type 3 (3 points). The updated model had an area under the ROC curve of .738 in the discovery cohort and of .782 in the validation cohort. Cases were categorized into easy (score = 0-1), intermediate (score = 2-3), difficult (score = 4-6), and very difficult (score ≥7) groups. Satisfactory discrimination and calibration were observed. CONCLUSIONS: The original model achieved an acceptable level of prediction in the prospective cohort. The updated model exhibited superior performance and can be used in place of the previous version. (Clinical trial registration number: ChiCTR2100047087.).


Asunto(s)
Neoplasias Colorrectales , Resección Endoscópica de la Mucosa , Humanos , Resección Endoscópica de la Mucosa/efectos adversos , Neoplasias Colorrectales/patología , Estudios Prospectivos , Estudios Retrospectivos , Estudios de Cohortes , Resultado del Tratamiento
12.
Anticancer Drugs ; 35(2): 129-139, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-37615540

RESUMEN

Colorectal cancer (CRC) is one of the world's most common and deadly cancers. According to GLOBOCAN2020's global incidence rate and mortality estimates, CRC is the third main cause of cancer and the second leading cause of cancer-related deaths worldwide. The US Food and Drug Administration has approved auranofin for the treatment of rheumatoid arthritis. It is a gold-containing chemical that inhibits thioredoxin reductase. Auranofin has a number of biological activities, including anticancer activity, although it has not been researched extensively in CRC, and the mechanism of action on CRC cells is still unknown. The goal of this research was to see how Auranofin affected CRC cells in vivo and in vitro . The two chemical libraries were tested for drugs that make CRC cells more responsive. The CCK-8 technique was used to determine the cell survival rate. The invasion, migration, and proliferation of cells were assessed using a transwell test and a colony cloning experiment. An electron microscope was used to observe autophagosome formation. Western blotting was also used to determine the degree of expression of related proteins in cells. Auranofin's tumor-suppressing properties were further tested in a xenograft tumor model of human SW620 CRC cells. Auranofin dramatically reduced the occurrence of CRC by decreasing the proliferation, migration, and invasion of CRC cells, according to our findings. Through a mTOR-dependent mechanism, auranofin inhibits the epithelial-mesenchymal transition (EMT) and induces autophagy in CRC cells. Finally, in-vivo tests revealed that auranofin suppressed tumor growth in xenograft mice while causing no harm. In summary, auranofin suppresses CRC cell growth, invasion, and migration. Auranofin inhibits the occurrence and progression of CRC by decreasing EMT and inducing autophagy in CRC cells via a mTOR-dependent mechanism. These findings suggest that auranofin could be a potential chemotherapeutic medication for the treatment of human CRC.


Asunto(s)
Auranofina , Neoplasias Colorrectales , Humanos , Animales , Ratones , Auranofina/farmacología , Auranofina/uso terapéutico , Línea Celular Tumoral , Serina-Treonina Quinasas TOR/metabolismo , Neoplasias Colorrectales/patología , Autofagia , Transición Epitelial-Mesenquimal , Movimiento Celular , Proliferación Celular , Regulación Neoplásica de la Expresión Génica
13.
Chem Rev ; 122(13): 11432-11473, 2022 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-35537069

RESUMEN

Metal ions are ubiquitous in nature and play significant roles in assembling functional materials in fields spanning chemistry, biology, and materials science. Metal-phenolic materials are assembled from phenolic components in the presence of metal ions through the formation of metal-organic complexes. Alkali, alkali-earth, transition, and noble metal ions as well as metalloids interacting with phenolic building blocks have been widely exploited to generate diverse hybrid materials. Despite extensive studies on the synthesis of metal-phenolic materials, a comprehensive summary of how metal ions guide the assembly of phenolic compounds is lacking. A fundamental understanding of the roles of metal ions in metal-phenolic materials engineering will facilitate the assembly of materials with specific and functional properties. In this review, we focus on the diversity and function of metal ions in metal-phenolic material engineering and emerging applications. Specifically, we discuss the range of underlying interactions, including (i) cation-π, (ii) coordination, (iii) redox, and (iv) dynamic covalent interactions, and highlight the wide range of material properties resulting from these interactions. Applications (e.g., biological, catalytic, and environmental) and perspectives of metal-phenolic materials are also highlighted.


Asunto(s)
Complejos de Coordinación , Metales , Álcalis , Complejos de Coordinación/química , Iones , Ciencia de los Materiales , Metales/química , Fenoles
14.
Nanotechnology ; 35(12)2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38064741

RESUMEN

Gallium oxide (Ga2O3) is a promising wide bandgap semiconductor that is viewed as a contender for the next generation of high-power electronics due to its high theoretical breakdown electric field and large Baliga's figure of merit. Here, we report a facile route of synthesizingß-Ga2O3via direct oxidation conversion using solution-processed two-dimensional (2D) GaS semiconducting nanomaterial. Higher order of crystallinity in x-ray diffraction patterns and full surface coverage formation in scanning electron microscopy images after annealing were achieved. A direct and wide bandgap of 5 eV was calculated, and the synthesizedß-Ga2O3was fabricated as thin film transistors (TFT). Theß-Ga2O3TFT fabricated exhibits remarkable electron mobility (1.28 cm2Vs-1) and a good current ratio (Ion/Ioff) of 2.06 × 105. To further boost the electrical performance and solve the structural imperfections resulting from the exfoliation process of the 2D nanoflakes, we also introduced and doped graphene inß-Ga2O3TFT devices, increasing the electrical device mobility by ∼8-fold and thereby promoting percolation pathways for the charge transport. We found that electron mobility and conductivity increase directly with the graphene doping concentration. From these results, it can be proved that theß-Ga2O3networks have excellent carrier transport properties. The facile and convenient synthesis method successfully developed in this paper makes an outstanding contribution to applying 2D oxide materials in different and emerging optoelectronic applications.

15.
Int J Med Sci ; 21(4): 690-702, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38464829

RESUMEN

Hyperoside is a natural flavonol glycoside widely found in plants and has been reported to have a variety of pharmacological effects, including anticancer abilities. In this study, we demonstrated for the first time that hyperoside inhibited the proliferation of bladder cancer cells in vitro and in vivo. Moreover, hyperoside could not only induce cell cycle arrest, but also induce apoptosis of a few bladder cancer cells. Quantitative proteomics, bioinformatics analysis and Western blotting confirmed that hyperoside induced the overexpression of EGFR, Ras and Fas proteins, which affects a variety of synergistic and antagonistic downstream signaling pathways, including MAPKs and Akt, ultimately contributing to its anticancer effects in bladder cancer cells. This study reveals that hyperoside could be a promising therapeutic strategy for the prevention of bladder cancer.


Asunto(s)
Quercetina/análogos & derivados , Transducción de Señal , Neoplasias de la Vejiga Urinaria , Humanos , Puntos de Control del Ciclo Celular , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , Neoplasias de la Vejiga Urinaria/genética , Apoptosis , Carcinogénesis/genética , Receptores ErbB/genética , Proliferación Celular , Línea Celular Tumoral
16.
Clin Lab ; 70(1)2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38213211

RESUMEN

BACKGROUND: A fetus with increased copy number of chromosome 20 was identified by NIPT. Here we utilize several genetic tests and analyses to illuminate the etiology of such aneuploidy. METHODS: Amniotic fluid cells were extracted from pregnant woman and sent for karyotype and chromosomal microarray analysis (CMA). Trio pedigree analysis was conducted with Chromosome Analysis Suite and uniparental disomy (UPD)-tool software. RESULTS: CMA identified consistent results, which were 2 regions of homozygosity: arr[GRCh37]20p12.2q11.1 (11265096_26266313)hmz and arr[GRCh37]20q11.21q13.2(29510306_54430467)hmz. The trio pedigree analysis discovered that the fetal chromosome 20 was the entire maternal UPD mosaic with isodisomy and heterodisomy. CONCLUSIONS: When a large segment of chromosome is homozygous, appropriate genetic tests are required to find the potential mechanisms for UPD formation.


Asunto(s)
Cromosomas Humanos Par 20 , Disomía Uniparental , Embarazo , Femenino , Humanos , Disomía Uniparental/genética , Cromosomas Humanos Par 20/genética , Diagnóstico Prenatal/métodos , Cariotipificación , Feto
17.
Clin Exp Pharmacol Physiol ; 51(8): e13904, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38923060

RESUMEN

Myocardial ischemia-reperfusion injury (MIRI) is a common clinic scenario that occurs in the context of reperfusion therapy for acute myocardial infarction. It has been shown that cocaine and amphetamine-regulated transcript (CART) can ameliorate cerebral ischemia-reperfusion (I/R) injury, but the effect of CART on MIRI has not been studied yet. Here, we revealed that CART protected the heart during I/R process by inhibiting apoptosis and excessive autophagy, indicating that CART would be a potential drug candidate for the treatment of MIRI. Further analysis showed that CART upregulated the activation of phospho-AKT, leading to downregulation of lactate dehydrogenase (LDH) release, apoptosis, oxidative stress and excessive autophagy after I/R, which was inhibited by PI3K inhibitor, LY294002. Collectively, CART attenuated MIRI through inhibition of cardiomyocytes apoptosis and excessive autophagy, and the protective effect was dependent on PI3K/AKT signalling pathway.


Asunto(s)
Apoptosis , Autofagia , Daño por Reperfusión Miocárdica , Proteínas del Tejido Nervioso , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Transducción de Señal , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/patología , Animales , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/efectos de los fármacos , Fosfatidilinositol 3-Quinasas/metabolismo , Apoptosis/efectos de los fármacos , Proteínas del Tejido Nervioso/metabolismo , Masculino , Autofagia/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Ratas , Estrés Oxidativo/efectos de los fármacos , Ratas Sprague-Dawley
18.
Exp Parasitol ; 256: 108649, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37914152

RESUMEN

Type 1 diabetes mellitus is a chronic disease caused by the destruction of pancreatic beta cells. Based on the hygiene hypothesis, a growing body of evidence suggests a negative association between parasitic infections and diabetes in humans and animal models. The mechanism of parasite-mediated prevention of type 1 diabetes mellitus may be related to the adaptive and innate immune systems. Macrophage polarization is a new paradigm for the treatment of type 1 diabetes mellitus, and different host macrophage subsets play various roles during parasite infection. Proinflammatory cytokines are released by M1 macrophages, which are important in the development of type 1 diabetes mellitus. Parasite-activated M2 macrophages prevent the development of type 1 diabetes mellitus and can influence the development of adaptive immune responses through several mechanisms, including Th2 cells and regulatory T cells. Here, we review the role and mechanism of macrophage polarization in parasitic protection against type 1 diabetes mellitus.


Asunto(s)
Diabetes Mellitus Tipo 1 , Parásitos , Enfermedades Parasitarias , Humanos , Animales , Diabetes Mellitus Tipo 1/prevención & control , Macrófagos , Citocinas , Células Th2 , Activación de Macrófagos
19.
Anal Chem ; 95(23): 8780-8788, 2023 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-37262310

RESUMEN

Chemical contamination is one of the major obstacles for mechanical recycling of plastics. In this article, we built and open-sourced an in-house MS/MS library containing more than 500 plastic-related chemicals and developed mspcompiler, an R package, for the compilation of various libraries. We then proposed a workflow to process untargeted screening data acquired by liquid chromatography high-resolution mass spectrometry. These tools were subsequently employed to data originating from recycled high-density polyethylene (rHDPE) obtained from milk bottles. A total of 83 compounds were identified, with 66 easily annotated by making use of our in-house MS/MS libraries and the mspcompiler R package. In silico fragmentation combined with data obtained from gas chromatography-mass spectrometry and lists of chemicals related to plastics were used to identify those remaining unknown. A pseudo-multiple reaction monitoring method was also applied to sensitively target and screen the identified chemicals in the samples. Quantification results demonstrated that a good sorting of postconsumer materials and a better recycling technology may be necessary for food contact applications. Removal or reduction of non-volatile substances, such as octocrylene and 2-ethylhexyl-4-methoxycinnamate, is still challenging but vital for the safe use of rHDPE as food contact materials.


Asunto(s)
Espectrometría de Masas en Tándem , Migrantes , Humanos , Animales , Polietileno/química , Leche , Plásticos/química
20.
Biochem Biophys Res Commun ; 681: 218-224, 2023 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-37783120

RESUMEN

Epidermal growth factor receptor (EGFR)-mutant non-small-cell lung cancer (NSCLC) is clinically and genetically heterogeneous, with concurrent RB1/TP53 mutations, indicating an increased risk of transformation into small cell lung cancer (SCLC). When tumor cells convert into a different histological subtype, they lose their dependence on the original oncogenic driver, resulting in therapeutic resistance. However, the molecular details associated with this transformation remain unclear. It has been difficult to define molecular mechanisms of neuroendocrine (NE) transformation in lung cancer due to a lack of pre- and post-transformation clinical samples. In this study, we established a NSCLC cell line with concurrent RB1/TP53 mutations and built corresponding patient-derived xenograft (PDX) models to investigate the mechanisms underlying transformation to SCLC. Studying these PDX models, we demonstrate that EGFR loss facilitates lineage plasticity of lung adenocarcinoma initiated by biallelic mutations of TP53 and RB1. Gene expression analysis of these EGFR knockout tumors revealed altered expression of neuroendocrine synapse-associated lineage genes. There is an increased expression of epigenetic reprogramming factors like Sox2 and gene associated with neural development like NTRK in these EGFR knockout tumors. These findings uncovered the role of EGFR in the acquisition of plasticity, which is the ability of a cell to substantially modify its identity and take on a new phenotype, and defined a novel landscape of potential drivers of NE transformation in lung cancer.


Asunto(s)
Adenocarcinoma del Pulmón , Carcinoma de Pulmón de Células no Pequeñas , Receptores ErbB , Neoplasias Pulmonares , Carcinoma Pulmonar de Células Pequeñas , Humanos , Adenocarcinoma del Pulmón/patología , Carcinoma de Pulmón de Células no Pequeñas/patología , Receptores ErbB/genética , Neoplasias Pulmonares/patología , Mutación , Inhibidores de Proteínas Quinasas/uso terapéutico , Carcinoma Pulmonar de Células Pequeñas/patología , Animales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA