Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 509
Filtrar
Más filtros

País/Región como asunto
Intervalo de año de publicación
1.
Brain ; 147(1): 147-162, 2024 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-37640028

RESUMEN

Multiple sclerosis is a chronic neuroinflammatory disorder characterized by demyelination, oligodendrocyte damage/loss and neuroaxonal injury in the context of immune cell infiltration in the CNS. No neuroprotective therapy is available to promote the survival of oligodendrocytes and protect their myelin processes in immune-mediated demyelinating diseases. Pro-inflammatory CD4 Th17 cells can interact with oligodendrocytes in multiple sclerosis and its animal model, causing injury to myelinating processes and cell death through direct contact. However, the molecular mechanisms underlying the close contact and subsequent detrimental interaction of Th17 cells with oligodendrocytes remain unclear. In this study we used single cell RNA sequencing, flow cytometry and immunofluorescence studies on CNS tissue from multiple sclerosis subjects, its animal model and controls to characterize the expression of cell adhesion molecules by mature oligodendrocytes. We found that a significant proportion of human and murine mature oligodendrocytes express melanoma cell adhesion molecule (MCAM) and activated leukocyte cell adhesion molecule (ALCAM) in multiple sclerosis, in experimental autoimmune encephalomyelitis and in controls, although their regulation differs between human and mouse. We observed that exposure to pro-inflammatory cytokines or to human activated T cells are associated with a marked downregulation of the expression of MCAM but not of ALCAM at the surface of human primary oligodendrocytes. Furthermore, we used in vitro live imaging, immunofluorescence and flow cytometry to determine the contribution of these molecules to Th17-polarized cell adhesion and cytotoxicity towards human oligodendrocytes. Silencing and blocking ALCAM but not MCAM limited prolonged interactions between human primary oligodendrocytes and Th17-polarized cells, resulting in decreased adhesion of Th17-polarized cells to oligodendrocytes and conferring significant protection of oligodendrocytic processes. In conclusion, we showed that human oligodendrocytes express MCAM and ALCAM, which are differently modulated by inflammation and T cell contact. We found that ALCAM is a ligand for Th17-polarized cells, contributing to their capacity to adhere and induce damage to human oligodendrocytes, and therefore could represent a relevant target for neuroprotection in multiple sclerosis.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Esclerosis Múltiple , Humanos , Ratones , Animales , Linfocitos T CD4-Positivos/metabolismo , Molécula de Adhesión Celular del Leucocito Activado/metabolismo , Adhesión Celular , Oligodendroglía/metabolismo
2.
BMC Plant Biol ; 24(1): 23, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38166728

RESUMEN

BACKGROUND: Spiraea L. is a genus comprising approximately 90 species that are distributed throughout the northern temperate regions. China is recognized as the center of species diversity for this genus, hosting more than 70 species, including 47 endemic species. While Spiraea is well-known for its ornamental value, its taxonomic and phylogenetic studies have been insufficient. RESULTS: In this study, we conducted sequencing and assembly of the plastid genomes (plastomes) of 34 Asiatic Spiraea accessions (representing 27 Asiatic Spiraea species) from China and neighboring regions. The Spiraea plastid genome exhibits typical quadripartite structures and encodes 113-114 genes, including 78-79 protein-coding genes (PCGs), 30 tRNA genes, and 4 rRNA genes. Linear regression analysis revealed a significant correlation between genome size and the length of the SC region. By the sliding windows method, we identified several hypervariable hotspots within the Spiraea plastome, all of which were localized in the SC regions. Our phylogenomic analysis successfully established a robust phylogenetic framework for Spiraea, but it did not support the current defined section boundaries. Additionally, we discovered that the genus underwent diversification after the Early Oligocene (~ 30 Ma), followed by a rapid speciation process during the Pliocene and Pleistocene periods. CONCLUSIONS: The plastomes of Spiraea provided us invaluable insights into its phylogenetic relationships and evolutionary history. In conjunction with plastome data, further investigations utilizing other genomes, such as the nuclear genome, are urgently needed to enhance our understanding of the evolutionary history of this genus.


Asunto(s)
Genoma del Cloroplasto , Genoma de Plastidios , Rosaceae , Spiraea , Filogenia , Evolución Molecular , Genoma del Cloroplasto/genética
3.
BMC Cancer ; 24(1): 230, 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38373930

RESUMEN

BACKGROUND: This study aimed to identify metabolic subtypes in ESCA, explore their relationship with immune landscapes, and establish a metabolic index for accurate prognosis assessment. METHODS: Clinical, SNP, and RNA-seq data were collected from 80 ESCA patients from the TCGA database and RNA-seq data from the GSE19417 dataset. Metabolic genes associated with overall survival (OS) and progression-free survival (PFS) were selected, and k-means clustering was performed. Immune-related pathways, immune infiltration, and response to immunotherapy were predicted using bioinformatic algorithms. Weighted gene co-expression network analysis (WGCNA) was conducted to identify metabolic genes associated with co-expression modules. Lastly, cell culture and functional analysis were performed using patient tissue samples and ESCA cell lines to verify the identified genes and their roles. RESULTS: Molecular subtypes were identified based on the expression profiles of metabolic genes, and univariate survival analysis revealed 163 metabolic genes associated with ESCA prognosis. Consensus clustering analysis classified ESCA samples into three distinct subtypes, with MC1 showing the poorest prognosis and MC3 having the best prognosis. The subtypes also exhibited significant differences in immune cell infiltration, with MC3 showing the highest scores. Additionally, the MC3 subtype demonstrated the poorest response to immunotherapy, while the MC1 subtype was the most sensitive. WGCNA analysis identified gene modules associated with the metabolic index, with SLC5A1, NT5DC4, and MTHFD2 emerging as prognostic markers. Gene and protein expression analysis validated the upregulation of MTHFD2 in ESCA. MTHFD2 promotes the progression of ESCA and may be a potential therapeutic target for ESCA. CONCLUSION: The established metabolic index and identified metabolic genes offer potential for prognostic assessment and personalized therapeutic interventions for ESCA, underscoring the importance of targeting metabolism-immune interactions in ESCA. MTHFD2 promotes the progression of ESCA and may be a potential therapeutic target for ESCA.


Asunto(s)
Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Humanos , Pronóstico , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/terapia , Inmunoterapia , Regulación hacia Arriba
4.
Langmuir ; 40(12): 6537-6549, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38483278

RESUMEN

The sintering of hydrate aggregates on the pipe wall is a major form of hydrate deposition. Understanding the sintering behavior of hydrates on the wall is crucial for promoting hydrate safety management and preventing pipeline blockage. However, limited research currently exists on this topic. In this study, the cohesive force strength of hydrate particles on the wall surface under different conditions was directly measured using a high-pressure micromechanical force device (HP-MMF). Subsequently, the effects of subcooling and glycine on the cohesive force were investigated. The results indicate that the cohesive force is influenced by different growth states during the process of free water on the wall surface gradually growing into hydrate. Three states with larger measured values during the growth process were selected for research. Observation showed that increased subcooling strengthened sintering by accelerating the growth rate of the hydrate film, resulting in a significant increase in cohesive force. The role of glycine in the methane hydrate system was then evaluated. Glycine was found to reduce the degree of sintering by reducing the growth rate of the hydrate film, thereby decreasing the cohesive force. The optimal concentration in the system was determined to be 0.25 wt %. Moreover, compared with low subcooling (1 °C), glycine had a better effect at high subcooling (5 °C). At 5 °C subcooling and the optimal concentration, the cohesive force in the wall droplet state decreases from 677.38 to 489.02 mN/m, the cohesive force at the low-saturation state decreases from 951.79 to 543.32 mN/m, and the cohesive force at the high-saturation state decreases from 1194.95 to 641.76 mN/m. These findings contribute to a better understanding of the cohesive force behavior of gas hydrate on the inner wall of the pipeline and provide basic data for reducing the risk of hydrate blockage.

5.
Mol Biol Rep ; 51(1): 386, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38441676

RESUMEN

BACKGROUND: There was significant difference in muscle development between fat-type and lean-type pig breeds. METHODS AND RESULTS: In current study, transcriptome analysis and bioinformatics analysis were used to compare the difference in longissimus dorsi (LD) muscle at three time-points (38 days post coitus (dpc), 58 dpc, and 78 dpc ) between Huainan (HN) and Large white (LW) pig breeds. A total of 24500 transcripts were obtained in 18 samples, and 2319, 2799, and 3713 differently expressed genes (DEGs) were identified between these two breeds at 38 dpc, 58 dpc, and 78 dpc, respectively. And the number and foldchange of DEGs were increased, the alternative splice also increased. The cluster analysis of DEGs indicated the embryonic development progress of LD muscle between these two breeds was different. There were 539 shared DEGs between HN and LW at three stages, and the top-shared DEGs were associated with muscle development and lipid deposition, such as KLF4, NR4A1, HSP70, ZBTB16 and so on. CONCLUSIONS: The results showed DEGs between Huainan (HN) and Large white (LW) pig breeds, and contributed to the understanding the muscle development difference between HN and LW, and provided basic materials for improvement of meat quality.


Asunto(s)
Biología Computacional , Perfilación de la Expresión Génica , Femenino , Embarazo , Porcinos/genética , Animales , Análisis por Conglomerados , Desarrollo Embrionario , Obesidad , Vitaminas
6.
Proc Natl Acad Sci U S A ; 118(34)2021 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-34417310

RESUMEN

T helper (Th)17 cells are considered to contribute to inflammatory mechanisms in diseases such as multiple sclerosis (MS). However, the discussion persists regarding their true role in patients. Here, we visualized central nervous system (CNS) inflammatory processes in models of MS live in vivo and in MS brains and discovered that CNS-infiltrating Th17 cells form prolonged stable contact with oligodendrocytes. Strikingly, compared to Th2 cells, direct contact with Th17 worsened experimental demyelination, caused damage to human oligodendrocyte processes, and increased cell death. Importantly, we found that in comparison to Th2 cells, both human and murine Th17 cells express higher levels of the integrin CD29, which is linked to glutamate release pathways. Of note, contact of human Th17 cells with oligodendrocytes triggered release of glutamate, which induced cell stress and changes in biosynthesis of cholesterol and lipids, as revealed by single-cell RNA-sequencing analysis. Finally, exposure to glutamate decreased myelination, whereas blockade of CD29 preserved oligodendrocyte processes from Th17-mediated injury. Our data provide evidence for the direct and deleterious attack of Th17 cells on the myelin compartment and show the potential for therapeutic opportunities in MS.


Asunto(s)
Encefalomielitis Autoinmune Experimental/inducido químicamente , Glicoproteína Mielina-Oligodendrócito/farmacología , Oligodendroglía/efectos de los fármacos , Células Th17/fisiología , Animales , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Encefalomielitis Autoinmune Experimental/metabolismo , Encefalomielitis Autoinmune Experimental/patología , Adyuvante de Freund , Inflamación , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Oligodendroglía/metabolismo , Toxina del Pertussis/toxicidad
7.
Biochem Genet ; 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38376577

RESUMEN

The aim of this study was to investigate the role and mechanism of circ-RNF111 in the human ovarian cancer cell line SKOV-3. First, qRT-PCR was used to detect circ-RNF111 and miR-556-5p expression levels in human normal ovarian epithelial cells IOSE80 and human ovarian cancer cells SKOV-3. CCK-8 and colony formation assays were adopted to determine the proliferation rate and cell viability of SKOV-3 cells, respectively. Additionally, in an attempt to reveal the mechanism of circ-RNF111, we predicted the targeting relationship between miR-556-5p and circ-RNF111 as well as miR-556-5p and CCND1 using the circinteractome and TargetScan databases, respectively, and validated their relationship by dual-luciferase reporter assay. The protein expression levels of CCND1 in SKOV-3 cells were detected by Western blot. Based on the above experiments, the expression of circ-RNF111 was found to be up-regulated in SKOV-3, and the knockdown of circ-RNF111 significantly inhibited the proliferation and viability of SKOV-3 cells. Then we confirmed that circ-RNF111 sponged miR-556-5p in SKOV-3 cells to up-regulate CCND1 expression. In addition, simultaneous inhibition of miR-556-5p or overexpression of CCND1 in SKOV-3 cells with knockdown of circ-RNF111 reversed the inhibitory effect of knockdown of circ-RNF111 on the protein expression level of CCND1, cell proliferation rate, and cell viability. In summary, circ-RNF111 promotes the proliferation of SKOV-3 cells by targeting the miR-556-5p/CCND1 axis. Circ-RNF111 may serve as a potential target for ovarian cancer therapy.

8.
J Med Internet Res ; 26: e52341, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38861710

RESUMEN

BACKGROUND: Coronary heart disease (CHD) is the leading cause of death globally. In addition, 20% to 40% of the patients with CHD have comorbid mental health issues such as anxiety or depression, affecting the prognosis and quality of life (QoL). Mobile health (mHealth) interventions have been developed and are widely used; however, the evidence for the effects of mHealth interventions on QoL, anxiety, and depression in patients with CHD is currently ambiguous. OBJECTIVE: In this study, we aimed to assess the effects of mHealth interventions on QoL, anxiety, and depression in patients with CHD. METHODS: We searched the Cochrane Library, PubMed, Embase, CINAHL, Web of Science, China National Knowledge Infrastructure, and Wanfang databases from inception to August 12, 2023. Eligible studies were randomized controlled trials that involved patients with CHD who received mHealth interventions and that reported on QoL, anxiety, or depression outcomes. We used the Cochrane risk-of-bias tool for randomized trials to evaluate the risk of bias in the studies, ensuring a rigorous and methodologically sound analysis. Review Manager (desktop version 5.4; The Cochrane Collaboration) and Stata MP (version 17.0; StataCorp LLC) were used to conduct the meta-analysis. The effect size was calculated using the standardized mean difference (SMD) and its 95% CI. RESULTS: The meta-analysis included 23 studies (5406 participants in total) and showed that mHealth interventions significantly improved QoL in patients with CHD (SMD 0.49, 95% CI 0.25-0.72; Z=4.07; P<.001) as well as relieved their anxiety (SMD -0.46, 95% CI -0.83 to -0.08; Z=2.38; P=.02) and depression (SMD -0.34, 95% CI -0.56 to -0.12; Z=3.00; P=.003) compared to usual care. The subgroup analyses indicated a significant effect favoring the mHealth intervention on reducing anxiety and depressive symptoms compared to usual care, especially when (1) the intervention duration was ≥6 months (P=.04 and P=.001), (2) the mHealth intervention was a simple one (only 1 mHealth intervention was used) (P=.01 and P<.001), (3) it was implemented during the COVID-19 pandemic (P=.04 and P=.01), (4) it was implemented in low- or middle-income countries (P=.01 and P=.02), (5) the intervention focused on mental health (P=.01 and P=.007), and (6) adherence rates were high (≥90%; P=.03 and P=.002). In addition, comparing mHealth interventions to usual care, there was an improvement in QoL when (1) the mHealth intervention was a simple one (P<.001), (2) it was implemented in low- or middle-income countries (P<.001), and (3) the intervention focused on mental health (P<.001). CONCLUSIONS: On the basis of the existing evidence, mHealth interventions might be effective in improving QoL and reducing anxiety and depression in patients with CHD. However, large sample, high-quality, and rigorously designed randomized controlled trials are needed to provide further evidence. TRIAL REGISTRATION: PROSPERO CRD42022383858; https://tinyurl.com/3ea2npxf.


Asunto(s)
Ansiedad , Enfermedad Coronaria , Depresión , Calidad de Vida , Ensayos Clínicos Controlados Aleatorios como Asunto , Telemedicina , Humanos , Calidad de Vida/psicología , Enfermedad Coronaria/psicología , Enfermedad Coronaria/complicaciones , Enfermedad Coronaria/terapia , Depresión/terapia , Depresión/psicología , Ansiedad/terapia , Ansiedad/psicología , Masculino , Femenino , Persona de Mediana Edad
9.
Plant J ; 112(6): 1447-1461, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36345647

RESUMEN

Structural chromosome variations (SCVs) are large-scale genomic variations that can be detected by fluorescence in situ hybridization (FISH). SCVs have played important roles in the genome evolution of wheat (Triticum aestivum L.), but little is known about their genetic effects. In this study, a total of 543 wheat accessions from the Chinese wheat mini-core collection and the Shanxi Province wheat collection were used for chromosome analysis using oligonucleotide probe multiplex FISH. A total of 139 SCVs including translocations, pericentric inversions, presence/absence variations (PAVs), and copy number variations (CNVs) in heterochromatin were identified at 230 loci. The distribution frequency of SCVs varied between ecological regions and between landraces and modern cultivars. Structural analysis using SCVs as markers clearly divided the landraces and modern cultivars into different groups. There are very clear instances illustrating alien introgression and wide application of foreign germplasms improved the chromosome diversity of Chinese modern wheat cultivars. A genome-wide association study (GWAS) identified 29 SCVs associated with 12 phenotypic traits, and five (RT4AS•4AL-1DS/1DL•1DS-4AL, Mg2A-3, Mr3B-10, Mr7B-13, and Mr4A-7) of them were further validated using a doubled haploid population and advanced sib-lines, implying the potential value of these SCVs. Importantly, the number of favored SCVs that were associated with agronomic trait improvement was significantly higher in modern cultivars compared to landraces, indicating positive selection in wheat breeding. This study demonstrates the significant effects of SCVs during wheat breeding and provides an efficient method of mining favored SCVs in wheat and other crops.


Asunto(s)
Estudio de Asociación del Genoma Completo , Triticum , Triticum/genética , Estudio de Asociación del Genoma Completo/métodos , Fitomejoramiento , Hibridación Fluorescente in Situ , Variaciones en el Número de Copia de ADN , Cromosomas de las Plantas/genética
10.
Hum Genet ; 142(6): 759-772, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37062025

RESUMEN

Chemoradiation-induced hearing loss (CRIHL) is one of the most devasting side effects for nasopharyngeal carcinoma (NPC) patients, which seriously affects survivors' long-term quality of life. However, few studies have comprehensively characterized the risk factors for CRIHL. In this study, we found that age at diagnosis, tumor stage, and concurrent cisplatin dose were positively associated with chemoradiation-induced hearing loss. We performed a genome-wide association study (GWAS) in 777 NPC patients and identified rs1050851 (within the exon 2 of NFKBIA), a variant with a high deleteriousness score, to be significantly associated with hearing loss risk (HR = 5.46, 95% CI 2.93-10.18, P = 9.51 × 10-08). The risk genotype of rs1050851 was associated with higher NFKBIA expression, which was correlated with lower cellular tolerance to cisplatin. According to permutation-based enrichment analysis, the variants mapping to 149 hereditary deafness genes were significantly enriched among GWAS top signals, which indicated the genetic similarity between hereditary deafness and CRIHL. Pathway analysis suggested that synaptic signaling was involved in the development of CRIHL. Additionally, the risk score integrating genetic and clinical factors can predict the risk of hearing loss with a relatively good performance in the test set. Collectively, this study shed new light on the etiology of chemoradiation-induced hearing loss, which facilitates high-risk individuals' identification for personalized prevention and treatment.


Asunto(s)
Sordera , Pérdida Auditiva , Neoplasias Nasofaríngeas , Humanos , Carcinoma Nasofaríngeo/genética , Cisplatino/efectos adversos , Estudio de Asociación del Genoma Completo , Calidad de Vida , Pérdida Auditiva/inducido químicamente , Pérdida Auditiva/genética , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/terapia , Neoplasias Nasofaríngeas/inducido químicamente
11.
Anal Chem ; 95(7): 3856-3863, 2023 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-36756955

RESUMEN

Myrosinase (Myr) is a type of critical ß-thioglucosidase enzyme activator essential for sustaining many functional foods to perform their health-promoting functions. An accurate and reliable Myr test is meaningful for food quality and dietary nutrition assessments, whereas the currently reported methods do not guarantee specificity and have high reliance on instrumentation, which are not suitable for rapid and onsite Myr screening especially in complex systems from various sources. Herein, we present a unique NIR-II absorption-based photothermal-responsive colorimetric biosensor for anti-interference onsite Myr determination and realization of rapid visualized outputs with the aid of smartphone calculation. Typically, assisted by glucose oxidase (GOx), Myr specifically converts the sinigrin substrate into hydrogen peroxide (H2O2) that can oxidize 3,3',5,5'-tetramethylbenzidine (TMB) catalyzed by AuNPs to form a charge transfer complex (CTC) with NIR-II absorption and photothermal characters. Delightfully, such a proposed method is able to determine Myr within a wide range of 0 to 172.5 mU/mL with a detection limit down to 2.96 mU/mL. Moreover, simple, rapid, and real-time visual Myr identification in actual food-sourced samples could also be readily achieved by smartphone readout processing, with the promising advantages of anti-interference, high accuracy, and low cost as well as labor-saving and intelligence engagement, thus providing great feasibility for precise measurement in complex and dynamic dietary sample analysis. Overall, our proposed method presents a novel technology for onsite dietary Myr enzyme profiling, which is promising to be applied in the food industry for nutritional composition profiles, freshness evaluation, and quality assessment.


Asunto(s)
Colorimetría , Nanopartículas del Metal , Colorimetría/métodos , Peróxido de Hidrógeno/análisis , Oro , Nanopartículas del Metal/química , Inteligencia
12.
J Neuroinflammation ; 20(1): 132, 2023 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-37254100

RESUMEN

BACKGROUND: Microglia are tissue resident macrophages with a wide range of critically important functions in central nervous system development and homeostasis. METHOD: In this study, we aimed to characterize the transcriptional landscape of ex vivo human microglia across different developmental ages using cells derived from pre-natal, pediatric, adolescent, and adult brain samples. We further confirmed our transcriptional observations using ELISA and RNAscope. RESULTS: We showed that pre-natal microglia have a distinct transcriptional and regulatory signature relative to their post-natal counterparts that includes an upregulation of phagocytic pathways. We confirmed upregulation of CD36, a positive regulator of phagocytosis, in pre-natal samples compared to adult samples in situ. Moreover, we showed adult microglia have more pro-inflammatory signature compared to microglia from other developmental ages. We indicated that adult microglia are more immune responsive by secreting increased levels of pro-inflammatory cytokines in response to LPS treatment compared to the pre-natal microglia. We further validated in situ up-regulation of IL18 and CXCR4 in human adult brain section compared to the pre-natal brain section. Finally, trajectory analysis indicated that the transcriptional signatures adopted by microglia throughout development are in response to a changing brain microenvironment and do not reflect predetermined developmental states. CONCLUSION: In all, this study provides unique insight into the development of human microglia and a useful reference for understanding microglial contribution to developmental and age-related human disease.


Asunto(s)
Microglía , Transcriptoma , Humanos , Niño , Adolescente , Microglía/metabolismo , Longevidad , Fagocitosis , Análisis de Secuencia de ARN
13.
Small ; 19(36): e2302372, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37118858

RESUMEN

Atomically precise metal nanoclusters (NCs) represent an emerging sector of light-harvesting antennas by virtue of peculiar atomic stacking fashion, quantum confinement effect, and molecular-like discrete energy band structure. Nevertheless, precise control of charge carriers over metal NCs has yet to be achieved by the short carrier lifetime and intrinsic instability of metal NCs, which renders the complexity of metal NCs-based photosystems with photoredox mechanisms remaining elusive. Herein, fine tuning of charge migration over metal NCs is demonstrated by constructing directional charge transfer channels in multilayered heterostructure enabled by a facile layer-by-layer (LbL) assembly approach, wherein oppositely charged branched poly-ethylenimine (BPEI) and glutathione (GSH)-capped gold NCs [Aux NCs, Au25 (GSH)18 NCs] are alternately deposited on the metal oxide (MOs: TiO2 , WO3 , Fe2 O3 ) substrates. TheAux (Au25 ) NCs layer serves as light-harvesting antennas for engendering charge carriers, andBPEI interim layer uniformly intercalated at the interface of Aux NCs layer constitutes the tandem hole transport channel for motivating the charge transfer cascade, resulting in the considerably enhanced photoelectrochemical water oxidation performances. Besides, poor photo-stability of Aux NCs is surmounted by stimulating the hole transfer kinetics process.

14.
Small ; 19(23): e2207201, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36899444

RESUMEN

Insufficienct T lymphocyte infiltration and unresponsiveness to immune checkpoint blockade therapy are still major difficulties for the clinical treatment of pancreatic ductal adenocarcinoma (PDAC). Although econazole has shown promise in inhibiting PDAC growth, its poor bioavailability and water solubility limit its potential as a clinical therapy for PDAC. Furthermore, the synergistic role of econazole and biliverdin in immune checkpoint blockade therapy in PDAC remains elusive and challenging. Herein, a chemo-phototherapy nanoplatform is designed by which econazole and biliverdin can be co-assembled (defined as FBE NPs), which significantly improve the poor water solubility of econazole and enhance the efficacy of PD-L1 checkpoint blockade therapy against PDAC. Mechanistically, econazole and biliverdin are directly released into the acidic cancer microenvironment, to activate immunogenic cell death via biliverdin-induced PTT/PDT and boost the immunotherapeutic response of PD-L1 blockade. In addition, econazole simultaneously enhances PD-L1 expression to sensitize anti-PD-L1 therapy, leading to suppression of distant tumors, long-term immune memory effects, improved dendritic cell maturation, and tumor infiltration of CD8+ T lymphocytes. The combined FBE NPs and α-PDL1 show synergistic antitumor efficacy. Collectively, FBE NPs show excellent biosafety and antitumor efficacy by combining chemo-phototherapy with PD-L1 blockade, which has promising potential in a precision medicine approach as a PDAC treatment strategy.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Econazol/uso terapéutico , Biliverdina/uso terapéutico , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Carcinoma Ductal Pancreático/tratamiento farmacológico , Neoplasias Pancreáticas/tratamiento farmacológico , Inmunoterapia , Agua , Microambiente Tumoral , Línea Celular Tumoral , Neoplasias Pancreáticas
15.
Small ; 19(35): e2300804, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37183292

RESUMEN

The rational design of the directional charge transfer channel represents an important strategy to finely tune the charge migration and separation in photocatalytic CO2 -to-fuel conversion. Despite the progress made in crafting high-performance photocatalysts, developing elegant photosystems with precisely modulated interfacial charge transfer feature remains a grand challenge. Here, a facile one-pot method is developed to achieve in situ self-assembly of Pd nanocrystals (NYs) on the transition metal chalcogenide (TMC) substrate with the aid of a non-conjugated insulating polymer, i.e., branched polyethylenimine (bPEI), for photoreduction of CO2 to syngas (CO/H2 ). The generic reducing capability of the abundant amine groups grafted on the molecular backbone of bPEI fosters the homogeneous growth of Pd NYs on the TMC framework. Intriguingly, the self-assembled TMCs@bPEI@Pd heterostructure with bi-directional spatial charge transport pathways exhibit significantly boosted photoactivity toward CO2 -to-syngas conversion under visible light irradiation, wherein bPEI serves as an efficient hole transfer mediator, and simultaneously Pd NYs act as an electron-withdrawing modulator for accelerating spatially vectorial charge separation. Furthermore, in-depth understanding of the in situ formed intermediates during the CO2 photoreduction process are exquisitely probed. This work provides a quintessential paradigm for in situ construction of multi-component heterojunction photosystem for solar-to-fuel energy conversion.

16.
J Med Virol ; 95(6): e28860, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37310118

RESUMEN

Human leukocyte antigen (HLA) molecules are essential for presenting Epstein-Barr virus (EBV) antigens and are closely related to nasopharyngeal carcinoma (NPC). This study aims to systematically investigate the association between HLA-bound EBV peptides and NPC risk through in silico HLA-peptide binding prediction. A total of 455 NPC patients and 463 healthy individuals in NPC endemic areas were recruited, and HLA-target sequencing was performed. HLA-peptide binding prediction for EBV, followed by peptidome-wide logistic regression and motif analysis, was applied. Binding affinity changes for EBV peptides carrying high-risk mutations were analyzed. We found that NPC-associated EBV peptides were significantly enriched in immunogenic proteins and core linkage disequilibrium (LD) proteins related to evolution, especially those binding HLA-A alleles (p = 3.10 × 10-4 for immunogenic proteins and p = 8.10 × 10-5 for core LD proteins related to evolution). These peptides were clustered and showed binding motifs of HLA supertypes, among which supertype A02 presented an NPC-risk effect (padj = 3.77 × 10-4 ) and supertype A03 presented an NPC-protective effect (padj = 4.89 × 10-4 ). Moreover, a decreased binding affinity toward risk HLA supertype A02 was observed for the peptide carrying the NPC-risk mutation BNRF1 V1222I (p = 0.0078), and an increased binding affinity toward protective HLA supertype A03 was observed for the peptide carrying the NPC-risk mutation BALF2 I613V (p = 0.022). This study revealed the distinct preference of EBV peptides for binding HLA supertypes, which may contribute to shaping EBV population structure and be involved in NPC development.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Neoplasias Nasofaríngeas , Humanos , Epítopos , Herpesvirus Humano 4/genética , Infecciones por Virus de Epstein-Barr/complicaciones , Infecciones por Virus de Epstein-Barr/genética , Carcinoma Nasofaríngeo/genética , Antígenos de Histocompatibilidad Clase II , Neoplasias Nasofaríngeas/genética
17.
Ann Neurol ; 91(2): 178-191, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34952986

RESUMEN

OBJECTIVE: Myelin regeneration in the human central nervous system relies on progenitor cells within the tissue parenchyma, with possible contribution from previously myelinating oligodendrocytes (OLs). In multiple sclerosis, a demyelinating disorder, variables affecting remyelination efficiency include age, severity of initial injury, and progenitor cell properties. Our aim was to investigate the effects of age and differentiation on the myelination potential of human OL lineage cells. METHODS: We derived viable primary OL lineage cells from surgical resections of pediatric and adult brain tissue. Ensheathment capacity using nanofiber assays and transcriptomic profiles from RNA sequencing were compared between A2B5+ antibody-selected progenitors and mature OLs (non-selected cells). RESULTS: We demonstrate that pediatric progenitor and mature cells ensheathed nanofibers more robustly than did adult progenitor and mature cells, respectively. Within both age groups, the percentage of fibers ensheathed and ensheathment length per fiber were greater for A2B5+ progenitors. Gene expression of OL progenitor markers PDGFRA and PTPRZ1 were higher in A2B5+ versus A2B5- cells and in pediatric A2B5+ versus adult A2B5+ cells. The p38 MAP kinases and actin cytoskeleton-associated pathways were upregulated in pediatric cells; both have been shown to regulate OL process outgrowth. Significant upregulation of "cell senescence" genes was detected in pediatric samples; this could reflect their role in development and the increased susceptibility of pediatric OLs to activating cell death responses to stress. INTERPRETATION: Our findings identify specific biological pathways relevant to myelination that are differentially enriched in human pediatric and adult OL lineage cells and suggest potential targets for remyelination enhancing therapies. ANN NEUROL 2022;91:178-191.


Asunto(s)
Envejecimiento/fisiología , Diferenciación Celular/fisiología , Senescencia Celular/fisiología , Vaina de Mielina/fisiología , Oligodendroglía/fisiología , Adulto , Muerte Celular , Linaje de la Célula , Niño , Preescolar , Femenino , Humanos , Lactante , Masculino , Persona de Mediana Edad , Células-Madre Neurales , RNA-Seq , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas , Proteínas Tirosina Fosfatasas Clase 5 Similares a Receptores/genética , Transcriptoma , Adulto Joven
18.
Theor Appl Genet ; 136(3): 37, 2023 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-36897407

RESUMEN

KEY MESSAGE: Structural variations are common in plant genomes, affecting meiotic recombination and distorted segregation in wheat. And presence/absence variations can significantly affect drought tolerance in wheat. Drought is a major abiotic stress limiting wheat production. Common wheat has a complex genome with three sub-genomes, which host large numbers of structural variations (SVs). SVs play critical roles in understanding the genetic contributions of plant domestication and phenotypic plasticity, but little is known about their genomic characteristics and their effects on drought tolerance. In the present study, high-resolution karyotypes of 180 doubled haploids (DHs) were developed. Signal polymorphisms between the parents involved with 8 presence-absence variations (PAVs) of tandem repeats (TR) distributed on the 7 (2A, 4A, 5A, 7A, 3B, 7B, and 2D) of 21 chromosomes. Among them, PAV on chromosome 2D showed distorted segregation, others transmit normal conforming to a 1:1 segregation ration in the population; and a PAVs recombination occurred on chromosome 2A. Association analysis of PAV and phenotypic traits under different water regimes, we found PAVs on chromosomes 4A, 5A, and 7B showed negative effect on grain length (GL) and grain width (GW); PAV.7A had opposite effect on grain thickness (GT) and spike length (SL), with the effect on traits differing under different water regimes. PAVs on linkage group 2A, 4A, 7A, 2D, and 7B associated with the drought tolerance coefficients (DTCs), and significant negative effect on drought resistance values (D values) were detected in PAV.7B. Additionally, quantitative trait loci (QTL) associated with phenotypic traits using the 90 K SNP array showed QTL for DTCs and grain-related traits in chromosomes 4A, and 5A, 3B were co-localized in differential regions of PAVs. These PAVs can cause the differentiation of the target region of SNP and could be used for genetic improvement of agronomic traits under drought stress via marker-assisted selection (MAS) breeding.


Asunto(s)
Carácter Cuantitativo Heredable , Triticum , Mapeo Cromosómico , Triticum/genética , Resistencia a la Sequía , Fenotipo , Grano Comestible/genética , Agua
19.
Liver Int ; 43(4): 928-944, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36776105

RESUMEN

BACKGROUND AND AIMS: Human hepatocellular carcinoma (HCC) is an aggressive malignancy with poor clinical outcomes. There are limited therapeutic options for those diagnosed with terminal HCC and therefore incorporating novel agents into standard-of-care regimens is urgently needed. In contrast to de novo drug discovery, the strategy of repurposing compounds initially designed to treat animals might yield substantial advantages in terms of efficacy and safety. Given the evidence for the clinical efficacy of toceranib phosphate (TOC) against canine carcinomas, we aimed to investigate its therapeutic effect on human HCC. METHODS: The antitumor effects of TOC were evaluated using human HCC cell lines and cell-line-derived xenograft models. Changes in autophagic response upon TOC exposure were quantified through immunoblotting and immunofluorescence analysis. The role of TOC-triggered autophagy was addressed via pharmacological and genetic inhibition. RESULTS: We demonstrated TOC exhibited potent antitumor activity against human HCC cells by stimulating apoptosis in vitro and in vivo by a concomitant increase in autophagic flux. Blocking the TOC-triggered autophagy inhibited cellular proliferation and decreased tumour burden, indicating a protective role of autophagy against TOC-mediated HCC cell death. This role played by TOC-induced autophagy was further linked to the inactivation of the Akt/mTOR pathway that could be attributed to the upregulation of Cyr61. Moreover, treatment with sorafenib plus TOC resulted in pronounced synergistic effects on HCC cells. CONCLUSION: Our results elucidate a newly identified therapeutic potential of TOC in treating HCC, sparking a growing interest in repurposing such canine drugs for human use.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Animales , Perros , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Resistencia a Antineoplásicos/genética , Ensayos Antitumor por Modelo de Xenoinjerto , Apoptosis , Línea Celular Tumoral , Proliferación Celular , Autofagia/genética
20.
Anim Cogn ; 26(2): 515-522, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36131103

RESUMEN

Alarm signals and cues are crucial to animal survival and vary greatly across species. Eavesdropping on heterospecific alarm signals and cues can provide eavesdroppers with information about potential threats. In addition to acoustic alarm signals, evidence has accumulated that chemical alarm cues and disturbance cues can also play a role in alerting conspecifics to potential danger in adult anurans (frogs and toads). However, there is very little known about whether disturbance cues are exploited by heterospecifics. In the present study, we conducted a binary choice experiment and a prey chemical discrimination experiment, respectively, to test the responses of a sympatric anuran species (red webbed treefrogs, Rhacophorus rhodopus) and a sympatric predator species (Chinese green tree vipers, Trimeresurus stejnegeri) to disturbance odors emitted by serrate-legged small treefrogs (Kurixalus odontotarsus). In the binary choice experiment, we found that the presence of disturbance odors did not significantly trigger the avoidance behavior of R. rhodopus. In the prey chemical discrimination experiment, compared with odors from undisturbed K. odontotarsus (control odors) and odorless control, T. stejnegeri showed a significantly higher tongue-flick rate in response to disturbance odors. This result implies that disturbance odor cues of K. odontotarsus can be exploited by eavesdropping predators to detect prey. Our study provides partial evidence for heterospecific eavesdropping on disturbance cues and has an important implication for understanding heterospecific eavesdropping on chemical cues of adult anurans.


Asunto(s)
Señales (Psicología) , Odorantes , Animales , Anuros , Reacción de Prevención , Conducta Predatoria
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA