Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Genes Dev ; 34(11-12): 751-766, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32273287

RESUMEN

Human cancers with activating RAS mutations are typically highly aggressive and treatment-refractory, yet RAS mutation itself is insufficient for tumorigenesis, due in part to profound metabolic stress induced by RAS activation. Here we show that loss of REDD1, a stress-induced metabolic regulator, is sufficient to reprogram lipid metabolism and drive progression of RAS mutant cancers. Redd1 deletion in genetically engineered mouse models (GEMMs) of KRAS-dependent pancreatic and lung adenocarcinomas converts preneoplastic lesions into invasive and metastatic carcinomas. Metabolic profiling reveals that REDD1-deficient/RAS mutant cells exhibit enhanced uptake of lysophospholipids and lipid storage, coupled to augmented fatty acid oxidation that sustains both ATP levels and ROS-detoxifying NADPH. Mechanistically, REDD1 loss triggers HIF-dependent activation of a lipid storage pathway involving PPARγ and the prometastatic factor CD36. Correspondingly, decreased REDD1 expression and a signature of REDD1 loss predict poor outcomes selectively in RAS mutant but not RAS wild-type human lung and pancreas carcinomas. Collectively, our findings reveal the REDD1-mediated stress response as a novel tumor suppressor whose loss defines a RAS mutant tumor subset characterized by reprogramming of lipid metabolism, invasive and metastatic progression, and poor prognosis. This work thus provides new mechanistic and clinically relevant insights into the phenotypic heterogeneity and metabolic rewiring that underlies these common cancers.


Asunto(s)
Metabolismo de los Lípidos/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas ras/genética , Animales , Línea Celular Tumoral , Progresión de la Enfermedad , Ácidos Grasos/metabolismo , Células HEK293 , Humanos , Ratones , Ratones SCID , Mutación , Oxidación-Reducción
2.
Biol Pharm Bull ; 45(4): 438-445, 2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-35110426

RESUMEN

Non-small cell lung cancer (NSCLC) is one of the leading causes of cancer related death with few therapeutic treatment options. Under adverse tumor microenvironment, autophagy is an important mechanism of metabolic adaptations to sustain the survival and proliferation of tumor cells. Therefore, targeting autophagic activity represents a promising opportunity for NSCLC treatment. Here, we found that amodiaquine (AQ) increased autophagosome numbers and LC3BII and p62 at protein levels in A549 lung cancer cells suggesting the blockade of autophagic flux by AQ. To identify the key metabolic vulnerability associated with autophagy inhibition by AQ treatment, we then performed transcriptomics analysis in the presence or absence of AQ in A549 lung cancer cells and found stearoyl-CoA desaturase 1 (SCD1) was one of the most highly upregulated with AQ exposure. The induction of SCD1 by AQ exposure at both protein and mRNA level suggests that SCD1 could represent a potential therapeutic target of AQ treatment. Treatment of AQ in combination with SCD1 inhibition by A939572 demonstrated robust synergistic anti-cancer efficacy in cell proliferation assay and a lung cancer mouse xenograft model. Taken together, our study identified SCD1 could be a new therapeutic target upon autophagy inhibition by AQ exposure. Combinational treatment of autophagy inhibition and SCD1 inhibition achieves synergistic anti-tumor effect both in vitro and in vivo. This combinational approach could be a promising strategy for NSCLC treatment.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Amodiaquina/farmacología , Amodiaquina/uso terapéutico , Animales , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Línea Celular Tumoral , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Ratones , Estearoil-CoA Desaturasa/metabolismo , Microambiente Tumoral
3.
BMC Cancer ; 21(1): 1224, 2021 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-34775955

RESUMEN

BACKGROUND: CRBP-1, a cytosolic chaperone of vitamin A, is identified in a serious number of cancers; however, its biological role in hepatocellular carcinoma (HCC) needs to be further explored. The aim of our present study is to explore the roles and mechanisms of CRBP-1 in regulating liver cancer by using in vitro and in vivo biology approaches. METHODS: The expression level of CRBP-1 was detected using immunohistochemistry in HCC and matching adjacent non-tumorous liver tissues. Following established stable CRBP-1 overexpressed HCC cell lines, the cell growth and tumorigenicity were investigated both in vitro and in vivo. Intracellular retinoic acid was quantified by ELISA. The relationship between CRBP-1 and WIF1 was validated by using dual luciferase and ChIP analyses. RESULTS: The low expression of CRBP-1 was observed in HCC tissues compared to the normal liver tissues, while high CRBP-1 expression correlated with clinicopathological characteristics and increased overall survival in HCC patients. Overexpression of CRBP-1 significantly inhibited cell growth and tumorigenicity both in vitro and in vivo. Moreover, overexpression of CRBP-1 suppressed tumorsphere formation and cancer stemness related genes expression in HCC. Mechanically, CRBP-1 inhibited Wnt/ß-catenin signaling pathway to suppress cancer cell stemness of HCC. Furthermore, our results revealed that CRBP-1 could increase the intracellular levels of retinoic acid, which induced the activation of RARs/RXRs leading to the transcriptional expression of WIF1, a secreted antagonist of the Wnt/ß-catenin signaling pathway, by physically interacting with the region on WIF1 promoter. CONCLUSION: Our findings reveal that CRBP-1 is a crucial player in the initiation and progression of HCC, which provide a novel independent prognostic biomarker and therapeutic target for the diagnosis and treatment of HCC.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Células Madre Neoplásicas , Proteínas Celulares de Unión al Retinol/metabolismo , Vía de Señalización Wnt , Animales , Carcinoma Hepatocelular/mortalidad , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Proliferación Celular , Progresión de la Enfermedad , Resistencia a Antineoplásicos , Femenino , Humanos , Hígado/metabolismo , Neoplasias Hepáticas/mortalidad , Neoplasias Hepáticas/patología , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Persona de Mediana Edad , Proteínas de Neoplasias/metabolismo , Receptores de Ácido Retinoico/metabolismo , Receptores X Retinoide/metabolismo , Esferoides Celulares , Regulación hacia Arriba , beta Catenina/metabolismo
4.
Am J Physiol Endocrinol Metab ; 313(6): E737-E747, 2017 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-28899858

RESUMEN

The metabolic stress placed on skeletal muscle by aerobic exercise promotes acute and long-term health benefits in part through changes in gene expression. However, the transducers that mediate altered gene expression signatures have not been completely elucidated. Regulated in development and DNA damage 1 (REDD1) is a stress-induced protein whose expression is transiently increased in skeletal muscle following acute aerobic exercise. However, the role of this induction remains unclear. Because REDD1 altered gene expression in other model systems, we sought to determine whether REDD1 induction following acute exercise altered the gene expression signature in muscle. To do this, wild-type and REDD1-null mice were randomized to remain sedentary or undergo a bout of acute treadmill exercise. Exercised mice recovered for 1, 3, or 6 h before euthanization. Acute exercise induced a transient increase in REDD1 protein expression within the plantaris only at 1 h postexercise, and the induction occurred in both cytosolic and nuclear fractions. At this time point, global changes in gene expression were surveyed using microarray. REDD1 induction was required for the exercise-induced change in expression of 24 genes. Validation by RT-PCR confirmed that the exercise-mediated changes in genes related to exercise capacity, muscle protein metabolism, neuromuscular junction remodeling, and Metformin action were negated in REDD1-null mice. Finally, the exercise-mediated induction of REDD1 was partially dependent upon glucocorticoid receptor activation. In all, these data show that REDD1 induction regulates the exercise-mediated change in a distinct set of genes within skeletal muscle.


Asunto(s)
Músculo Esquelético/metabolismo , Condicionamiento Físico Animal/fisiología , Factores de Transcripción/genética , Factores de Transcripción/fisiología , Aerobiosis , Animales , Núcleo Celular/metabolismo , Corticosterona/sangre , Citosol/metabolismo , Regulación de la Expresión Génica/genética , Regulación de la Expresión Génica/fisiología , Hipoglucemiantes/farmacología , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina/fisiología , Metformina/farmacología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Análisis por Micromatrices , Fatiga Muscular , Receptores de Glucocorticoides/metabolismo
5.
J Biol Chem ; 290(3): 1623-38, 2015 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-25477506

RESUMEN

Pharmacological induction of proteotoxic stress is rapidly emerging as a promising strategy for cancer cell-directed chemotherapeutic intervention. Here, we describe the identification of a novel drug-like heat shock response inducer for the therapeutic induction of proteotoxic stress targeting malignant human melanoma cells. Screening a focused library of compounds containing redox-directed electrophilic pharmacophores employing the Stress & Toxicity PathwayFinder(TM) PCR Array technology as a discovery tool, a drug-like triphenylmethane-derivative (aurin; 4-[bis(p-hydroxyphenyl)methylene]-2,5-cyclohexadien-1-one) was identified as an experimental cell stress modulator that causes (i) heat shock factor transcriptional activation, (ii) up-regulation of heat shock response gene expression (HSPA6, HSPA1A, DNAJB4, HMOX1), (iii) early unfolded protein response signaling (phospho-PERK, phospho-eIF2α, CHOP (CCAAT/enhancer-binding protein homologous protein)), (iv) proteasome impairment with increased protein-ubiquitination, and (v) oxidative stress with glutathione depletion. Fluorescence polarization-based experiments revealed that aurin displays activity as a geldanamycin-competitive Hsp90α-antagonist, a finding further substantiated by molecular docking and ATPase inhibition analysis. Aurin exposure caused caspase-dependent cell death in a panel of human malignant melanoma cells (A375, G361, LOX-IMVI) but not in non-malignant human skin cells (Hs27 fibroblasts, HaCaT keratinocytes, primary melanocytes) undergoing the aurin-induced heat shock response without impairment of viability. Aurin-induced melanoma cell apoptosis depends on Noxa up-regulation as confirmed by siRNA rescue experiments demonstrating that siPMAIP1-based target down-regulation suppresses aurin-induced cell death. Taken together, our data suggest feasibility of apoptotic elimination of malignant melanoma cells using the quinone methide-derived heat shock response inducer aurin.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Apoptosis , Ácido Aurintricarboxílico/análogos & derivados , Proteínas de Choque Térmico/metabolismo , Melanoma/tratamiento farmacológico , Neoplasias Cutáneas/tratamiento farmacológico , Proteínas Adaptadoras Transductoras de Señales , Ácido Aurintricarboxílico/química , Línea Celular Tumoral , Supervivencia Celular , Ensayos de Selección de Medicamentos Antitumorales , Citometría de Flujo , Glutatión/metabolismo , Respuesta al Choque Térmico/genética , Humanos , Indolquinonas/química , Concentración 50 Inhibidora , Queratinocitos/efectos de los fármacos , Melanocitos/efectos de los fármacos , Potencial de la Membrana Mitocondrial , Modelos Moleculares , Estrés Oxidativo , Reacción en Cadena de la Polimerasa , ARN Interferente Pequeño/metabolismo , Regulación hacia Arriba
6.
Int J Mol Sci ; 14(2): 4185-202, 2013 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-23429201

RESUMEN

Repurposing approved and abandoned non-oncological drugs is an alternative developmental strategy for the identification of anticancer therapeutics that has recently attracted considerable attention. Due to the essential role of the cellular heat shock response in cytoprotection through the maintenance of proteostasis and suppression of apoptosis, small molecule heat shock response antagonists can be harnessed for targeted induction of cytotoxic effects in cancer cells. Guided by gene expression array analysis and a phenotypic screen interrogating a collection of 3,7-diamino-phenothiazinium derivatives, we have identified the redox-drug methylene blue (MB), used clinically for the infusional treatment of methemoglobinemia, as a negative modulator of heat shock response gene expression in human metastatic melanoma cells. MB-treatment blocked thermal (43 °C) and pharmacological (celastrol, geldanamycin) induction of heat shock response gene expression, suppressing Hsp70 (HSPA1A) and Hsp27 (HSPB1) upregulation at the mRNA and protein level. MB sensitized melanoma cells to the apoptogenic activity of geldanamycin, an Hsp90 antagonist known to induce the counter-regulatory upregulation of Hsp70 expression underlying cancer cell resistance to geldanamycin chemotherapy. Similarly, MB-cotreatment sensitized melanoma cells to other chemotherapeutics (etoposide, doxorubicin). Taken together, these data suggest feasibility of repurposing the non-oncological redox drug MB as a therapeutic heat shock response antagonist for cancer cell chemosensitization.

7.
Apoptosis ; 17(10): 1079-94, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22843330

RESUMEN

D-Penicillamine (3,3-dimethyl-D-cysteine; DP) is an FDA-approved redox-active D-cysteine-derivative with antioxidant, disulfide-reducing, and metal chelating properties used therapeutically for the control of copper-related pathology in Wilson's disease and reductive cystine-solubilization in cystinuria. Based on the established sensitivity of metastatic melanoma cells to pharmacological modulation of cellular oxidative stress, we tested feasibility of using DP for chemotherapeutic intervention targeting human A375 melanoma cells in vitro and in vivo. DP treatment induced caspase-dependent cell death in cultured human metastatic melanoma cells (A375, G361) without compromising viability of primary epidermal melanocytes, an effect not observed with the thiol-antioxidants N-acetyl-L-cysteine (NAC) and dithiothreitol. Focused gene expression array analysis followed by immunoblot detection revealed that DP rapidly activates the cytotoxic unfolded protein response (UPR; involving phospho-PERK, phospho-eIF2α, Grp78, CHOP, and Hsp70) and the mitochondrial pathway of apoptosis with p53 upregulation and modulation of Bcl-2 family members (involving Noxa, Mcl-1, and Bcl-2). DP (but not NAC) induced oxidative stress with early impairment of glutathione homeostasis and mitochondrial transmembrane potential. SiRNA-based antagonism of PMAIP1 expression blocked DP-induced upregulation of the proapoptotic BH3-only effector Noxa and prevented downregulation of the Noxa-antagonist Mcl-1, rescuing melanoma cells from DP-induced apoptosis. Intraperitoneal administration of DP displayed significant antimelanoma activity in a murine A375 xenograft model. It remains to be seen if melanoma cell-directed induction of UPR and apoptosis using DP or improved DP-derivatives can be harnessed for future chemotherapeutic intervention.


Asunto(s)
Melanoma/tratamiento farmacológico , Penicilamina/farmacología , Proteínas Proto-Oncogénicas c-bcl-2/fisiología , Respuesta de Proteína Desplegada/efectos de los fármacos , Animales , Apoptosis/efectos de los fármacos , Proteínas Reguladoras de la Apoptosis/farmacología , Línea Celular Tumoral , Chaperón BiP del Retículo Endoplásmico , Humanos , Melanoma/patología , Ratones , Mitocondrias/efectos de los fármacos , Trasplante de Neoplasias , Estrés Oxidativo/efectos de los fármacos , Proteínas Proto-Oncogénicas c-bcl-2/biosíntesis , Transcriptoma , Trasplante Heterólogo
8.
Invest New Drugs ; 30(4): 1289-301, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21547369

RESUMEN

Recent research suggests that altered redox control of melanoma cell survival, proliferation, and invasiveness represents a chemical vulnerability that can be targeted by pharmacological modulation of cellular oxidative stress. The endoperoxide artemisinin and semisynthetic artemisinin-derivatives including dihydroartemisinin (DHA) constitute a major class of antimalarials that kill plasmodium parasites through induction of iron-dependent oxidative stress. Here, we demonstrate that DHA may serve as a redox chemotherapeutic that selectively induces melanoma cell apoptosis without compromising viability of primary human melanocytes. Cultured human metastatic melanoma cells (A375, G361, LOX) were sensitive to DHA-induced apoptosis with upregulation of cellular oxidative stress, phosphatidylserine externalization, and activational cleavage of procaspase 3. Expression array analysis revealed DHA-induced upregulation of oxidative and genotoxic stress response genes (GADD45A, GADD153, CDKN1A, PMAIP1, HMOX1, EGR1) in A375 cells. DHA exposure caused early upregulation of the BH3-only protein NOXA, a proapototic member of the Bcl2 family encoded by PMAIP1, and genetic antagonism (siRNA targeting PMAIP1) rescued melanoma cells from apoptosis indicating a causative role of NOXA-upregulation in DHA-induced melanoma cell death. Comet analysis revealed early DHA-induction of genotoxic stress accompanied by p53 activational phosphorylation (Ser 15). In primary human epidermal melanocytes, viability was not compromised by DHA, and oxidative stress, comet tail moment, and PMAIP1 (NOXA) expression remained unaltered. Taken together, these data demonstrate that metastatic melanoma cells display a specific vulnerability to DHA-induced NOXA-dependent apoptosis and suggest feasibility of future anti-melanoma intervention using artemisinin-derived clinical redox antimalarials.


Asunto(s)
Antimaláricos/farmacología , Apoptosis/efectos de los fármacos , Artemisininas/farmacología , Melanocitos/efectos de los fármacos , Melanocitos/patología , Melanoma/patología , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Antioxidantes/farmacología , Apoptosis/genética , Caspasa 3/metabolismo , Células Cultivadas , Citoprotección/efectos de los fármacos , Citoprotección/genética , Daño del ADN/genética , Ensayos de Selección de Medicamentos Antitumorales , Activación Enzimática/efectos de los fármacos , Epidermis/patología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Genoma Humano/genética , Humanos , Quelantes del Hierro/farmacología , Melanocitos/metabolismo , Melanoma/genética , Melanoma/ultraestructura , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Mitocondrias/patología , Metástasis de la Neoplasia , Análisis de Secuencia por Matrices de Oligonucleótidos , Oxidación-Reducción/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Fosforilación/efectos de los fármacos , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteína p53 Supresora de Tumor/metabolismo , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/genética
9.
Cell Death Dis ; 13(2): 99, 2022 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-35110545

RESUMEN

Transketolase (TKT) which is an important metabolic enzyme in the pentose phosphate pathway (PPP) participates in maintaining ribose 5-phosphate levels. TKT is necessary for maintaining cell growth. However, we found that in addition to this, TKT can also affect tumor progression through other ways. Our previous study indicate that TKT could promote the development of liver cancer by affecting bile acid metabolism. And in this study, we discovered that TKT expression was remarkably upregulated in colorectal cancer, abnormal high expression of TKT is associated with poor prognosis of colorectal cancer. Additionally, TKT promoted colorectal cancer cell growth and metastasis. Further study demonstrated that TKT interacted with GRP78 and promoted colorectal cancer cell glycolysis through increasing AKT phosphorylation, thereby enhancing colorectal cancer cell metastasis. Thus, TKT is expected to become an indicator for judging the prognosis of colorectal cancer, and provide a theoretical basis for drug development of new treatment targets for colorectal cancer.


Asunto(s)
Neoplasias Colorrectales/patología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transcetolasa/metabolismo , Línea Celular Tumoral , Proliferación Celular , Neoplasias Colorrectales/metabolismo , Chaperón BiP del Retículo Endoplásmico/metabolismo , Femenino , Glucólisis , Humanos , Masculino , Persona de Mediana Edad , Metástasis de la Neoplasia , Fosforilación , Pronóstico , Unión Proteica
10.
Cell Death Dis ; 12(11): 1080, 2021 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-34775498

RESUMEN

Protein arginine methyltransferase 1 (PRMT1) is able to promote breast cancer cell proliferation. However, the detailed mechanisms of PRMT1-mediated breast cancer cell proliferation are largely unknown. In this study, we reveal that PRMT1-mediated methylation of EZH2 at the R342 site (meR342-EZH2) has a great effect on PRMT1-induced cell proliferation. We also demonstrate that meR342-EZH2 can accelerate breast cancer cell proliferation in vitro and in vivo. Further, we show that meR342-EZH2 promotes cell cycle progression by repressing P16 and P21 transcription expression. In terms of mechanism, we illustrate that meR342-EZH2 facilitates EZH2 binding with SUZ12 and PRC2 assembly by preventing AMPKα1-mediated phosphorylation of pT311-EZH2, which results in suppression of P16 and P21 transcription by enhancing EZH2 expression and H3K27me3 enrichment at P16 and P21 promoters. Finally, we validate that the expression of PRMT1 and meR342-EZH2 is negatively correlated with pT311-EZH2 expression. Our findings suggest that meR342-EZH2 may become a novel therapeutic target for the treatment of breast cancer.


Asunto(s)
Neoplasias de la Mama/genética , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Proteína-Arginina N-Metiltransferasas/metabolismo , Animales , Neoplasias de la Mama/patología , Carcinogénesis , Línea Celular Tumoral , Proliferación Celular , Femenino , Humanos , Metilación , Ratones , Ratones Desnudos , Fosforilación
11.
J Cachexia Sarcopenia Muscle ; 11(6): 1813-1829, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32924335

RESUMEN

BACKGROUND: Cancer cachexia is a complex metabolic disease with unmet medical need. Although many rodent models are available, none are identical to the human disease. Therefore, the development of new preclinical models that simulate some of the physiological, biochemical, and clinical characteristics of the human disease is valuable. The HT-1080 human fibrosarcoma tumour cell line was reported to induce cachexia in mice. Therefore, the purpose of this work was to determine how well the HT-1080 tumour model could recapitulate human cachexia and to examine its technical performance. Furthermore, the efficacy of ghrelin receptor activation via anamorelin treatment was evaluated, because it is one of few clinically validated mechanisms. METHODS: Female severe combined immunodeficient mice were implanted subcutaneously or heterotopically (renal capsule) with HT-1080 tumour cells. The cachectic phenotype was evaluated during tumour development, including body weight, body composition, food intake, muscle function (force and fatigue), grip strength, and physical activity measurements. Heterotopic and subcutaneous tumour histology was also compared. Energy balance was evaluated at standard and thermoneutral housing temperatures in the subcutaneous model. The effect of anamorelin (ghrelin analogue) treatment was also examined. RESULTS: The HT-1080 tumour model had excellent technical performance and was reproducible across multiple experimental conditions. Heterotopic and subcutaneous tumour cell implantation resulted in similar cachexia phenotypes independent of housing temperature. Tumour weight and histology was comparable between both routes of administration with minimal inflammation. Subcutaneous HT-1080 tumour-bearing mice presented with weight loss (decreased fat mass and skeletal muscle mass/fibre cross-sectional area), reduced food intake, impaired muscle function (reduced force and grip strength), and decreased spontaneous activity and voluntary wheel running. Key circulating inflammatory biomarkers were produced by the tumour, including growth differentiation factor 15, Activin A, interleukin 6, and TNF alpha. Anamorelin prevented but did not reverse anorexia and weight loss in the subcutaneous model. CONCLUSIONS: The subcutaneous HT-1080 tumour model displays many of the perturbations of energy balance and physical performance described in human cachexia, consistent with the production of key inflammatory factors. Anamorelin was most effective when administered early in disease progression. The HT-1080 tumour model is valuable for studying potential therapeutic targets for the treatment of cachexia.


Asunto(s)
Caquexia , Fibrosarcoma , Animales , Anorexia , Caquexia/etiología , Modelos Animales de Enfermedad , Femenino , Fibrosarcoma/complicaciones , Humanos , Ratones , Actividad Motora
12.
Cell Metab ; 32(6): 938-950.e6, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-33207247

RESUMEN

Platinum-based cancer therapy is restricted by dose-limiting side effects and is associated with elevation of growth differentiation factor 15 (GDF-15). But whether this elevation contributes to such side effects has been unclear. Here, we explored the effects of GDF-15 blockade on platinum-based chemotherapy-induced emesis, anorexia, and weight loss in mice and/or nonhuman primate models. We found that circulating GDF-15 is higher in subjects with cancer receiving platinum-based chemotherapy and is positively associated with weight loss in colorectal cancer (NCT00609622). Further, chemotherapy agents associated with high clinical emetic score induce circulating GDF-15 and weight loss in mice. Platinum-based treatment-induced anorexia and weight loss are attenuated in GDF-15 knockout mice, while GDF-15 neutralization with the monoclonal antibody mAB1 improves survival. In nonhuman primates, mAB1 treatment attenuates anorexia and emesis. These results suggest that GDF-15 neutralization is a potential therapeutic approach to alleviate chemotherapy-induced side effects and improve the quality of life.


Asunto(s)
Anorexia/inducido químicamente , Antineoplásicos/efectos adversos , Factor 15 de Diferenciación de Crecimiento/fisiología , Neoplasias/terapia , Platino (Metal)/efectos adversos , Vómitos/inducido químicamente , Animales , Femenino , Humanos , Macaca fascicularis , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones SCID , Pérdida de Peso
13.
J Invest Dermatol ; 135(6): 1649-1658, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25431849

RESUMEN

Endogenous UVA chromophores may act as sensitizers of oxidative stress underlying cutaneous photoaging and photocarcinogenesis, but the molecular identity of non-DNA key chromophores displaying UVA-driven photodyamic activity in human skin remains largely undefined. Here we report that 6-formylindolo[3,2-b]carbazole (FICZ), a tryptophan photoproduct and endogenous high-affinity aryl hydrocarbon receptor (AhR) agonist, acts as a nanomolar photosensitizer potentiating UVA-induced oxidative stress irrespective of AhR ligand activity. In human HaCaT and primary epidermal keratinocytes, photodynamic induction of apoptosis was elicited by the combined action of solar-simulated UVA and FICZ, whereas exposure to the isolated action of UVA or FICZ did not impair viability. In a human epidermal tissue reconstruct, FICZ/UVA cotreatment caused pronounced phototoxicity inducing keratinocyte cell death, and FICZ photodynamic activity was also substantiated in a murine skin exposure model. Array analysis revealed pronounced potentiation of cellular heat shock, endoplasmic reticulum stress, and oxidative stress response gene expression observed only upon FICZ/UVA cotreatment. FICZ photosensitization caused intracellular oxidative stress, and comet analysis revealed introduction of formamidopyrimidine-DNA glycosylase (Fpg)-sensitive oxidative DNA lesions suppressible by antioxidant cotreatment. Taken together, our data demonstrate that the endogenous AhR ligand FICZ displays nanomolar photodynamic activity representing a molecular mechanism of UVA-induced photooxidative stress potentially operative in human skin.


Asunto(s)
Carbazoles/química , Queratinocitos/efectos de los fármacos , Queratinocitos/efectos de la radiación , Fármacos Fotosensibilizantes/química , Piel/efectos de los fármacos , Piel/efectos de la radiación , Triptófano/química , Animales , Antioxidantes/química , Línea Celular , ADN/química , ADN Glicosilasas/metabolismo , Epidermis/efectos de los fármacos , Epidermis/metabolismo , Epidermis/efectos de la radiación , Femenino , Regulación de la Expresión Génica , Humanos , Inmunohistoquímica , Ligandos , Ratones , Estrés Oxidativo , Fotoquimioterapia/métodos , Reacción en Cadena de la Polimerasa , Receptores de Hidrocarburo de Aril/química
14.
Theranostics ; 5(10): 1083-97, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26199647

RESUMEN

Insufficient penetration of therapeutic agents into tumor tissues results in inadequate drug distribution and lower intracellular concentration of drugs, leading to the increase of drug resistance and resultant failure of cancer treatment. Targeted drug delivery to solid tumors followed by complete drug penetration and durable retention will significantly improve clinical outcomes of cancer therapy. Monoclonal antibodies have been commonly used in clinic for cancer treatment, but their limitation of penetrating into tumor tissues still remains because of their large size. Aptamers, as "chemical antibodies", are 15-20 times smaller than antibodies. To explore whether aptamers are superior to antibodies in terms of tumor penetration, we carried out the first comprehensive study to compare the performance of an EpCAM aptamer with an EpCAM antibody in theranostic applications. Penetration and retention were studied in in vitro three-dimensional tumorspheres, in vivo live animal imaging and mouse colorectal cancer xenograft model. We found that the EpCAM aptamer can not only effectively penetrate into the tumorsphere cores but can also be retained by tumor sphere cells for at least 24 h, while limited tumor penetration by EpCAM antibody was observed after 4 h incubation. As observed from in vivo live animal imaging, EpCAM aptamers displayed a maximum tumor uptake at around 10 min followed by a rapid clearance after 80 min, while the signal of peak uptake and disappearance of antibody appeared at 3 h and 6 h after intravenous injection, respectively. The signal of PEGylated EpCAM aptamers in xenograft tumors was sustained for 26 h, which was 4.3-fold longer than that of the EpCAM antibody. Consistently, there were 1.67-fold and 6.6-fold higher accumulation of PEGylated aptamer in xenograft tumors than that of antibody, at 3 h and 24 h after intravenous administration, respectively. In addition, the aptamer achieved at least a 4-time better tumor penetration in xenograft tumors than that of the antibody at a 200 µm distances from the blood vessels 3 h after intravenous injection. Taken together, these data indicate that aptmers are superior to antibodies in cancer theranostics due to their better tumor penetration, more homogeneous distribution and longer retention in tumor sites. Thus, aptamers are promising agents for targeted tumor therapeutics and molecular imaging.


Asunto(s)
Aptámeros de Nucleótidos/farmacocinética , Sistemas de Liberación de Medicamentos/métodos , Nanomedicina Teranóstica/métodos , Animales , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/farmacocinética , Aptámeros de Nucleótidos/química , Línea Celular Tumoral , Sistemas de Liberación de Medicamentos/instrumentación , Femenino , Humanos , Ratones , Ratones Endogámicos NOD , Ratones SCID , Nanomedicina Teranóstica/instrumentación , Distribución Tisular , Trasplante Heterólogo
15.
Nat Commun ; 6: 7014, 2015 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-25916556

RESUMEN

Macroautophagy (autophagy) is a critical cellular stress response; however, the signal transduction pathways controlling autophagy induction in response to stress are poorly understood. Here we reveal a new mechanism of autophagy control whose deregulation disrupts mitochondrial integrity and energy homeostasis in vivo. Stress conditions including hypoxia and exercise induce reactive oxygen species (ROS) through upregulation of a protein complex involving REDD1, an mTORC1 inhibitor and the pro-oxidant protein TXNIP. Decreased ROS in cells and tissues lacking either REDD1 or TXNIP increases catalytic activity of the redox-sensitive ATG4B cysteine endopeptidase, leading to enhanced LC3B delipidation and failed autophagy. Conversely, REDD1/TXNIP complex expression is sufficient to induce ROS, suppress ATG4B activity and activate autophagy. In Redd1(-/-) mice, deregulated ATG4B activity and disabled autophagic flux cause accumulation of defective mitochondria, leading to impaired oxidative phosphorylation, muscle ATP depletion and poor exercise capacity. Thus, ROS regulation through REDD1/TXNIP is physiological rheostat controlling stress-induced autophagy.


Asunto(s)
Autofagia , Proteínas Portadoras/metabolismo , Cisteína Endopeptidasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Tiorredoxinas/metabolismo , Factores de Transcripción/metabolismo , Animales , Proteínas Relacionadas con la Autofagia , Metabolismo Energético , Tolerancia al Ejercicio , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Estrés Oxidativo
16.
Autophagy ; 9(12): 2087-102, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24113242

RESUMEN

Pharmacological inhibition of autophagic-lysosomal function has recently emerged as a promising strategy for chemotherapeutic intervention targeting cancer cells. Repurposing approved and abandoned non-oncological drugs is an alternative approach to the identification and development of anticancer therapeutics, and antimalarials that target autophagic-lysosomal functions have recently attracted considerable attention as candidates for oncological repurposing. Since cumulative research suggests that dependence on autophagy represents a specific vulnerability of malignant melanoma cells, we screened a focused compound library of antimalarials for antimelanoma activity. Here we report for the first time that amodiaquine (AQ), a clinical 4-aminoquinoline antimalarial with unexplored cancer-directed chemotherapeutic potential, causes autophagic-lysosomal and proliferative blockade in melanoma cells that surpasses that of its parent compound chloroquine. Monitoring an established set of protein markers (LAMP1, LC3-II, SQSTM1) and cell ultrastructural changes detected by electron microscopy, we observed that AQ treatment caused autophagic-lysosomal blockade in malignant A375 melanoma cells, a finding substantiated by detection of rapid inactivation of lysosomal cathepsins (CTSB, CTSL, CTSD). AQ-treatment was associated with early induction of energy crisis (ATP depletion) and sensitized melanoma cells to either starvation- or chemotherapeutic agent-induced cell death. AQ displayed potent antiproliferative effects, and gene expression array analysis revealed changes at the mRNA (CDKN1A, E2F1) and protein level (TP53, CDKN1A, CCND1, phospho-RB1 [Ser 780]/[Ser 807/811], E2F1) consistent with the observed proliferative blockade in S-phase. Taken together, our data suggest that the clinical antimalarial AQ is a promising candidate for repurposing efforts that aim at targeting autophagic-lysosomal function and proliferative control in malignant melanoma cells.


Asunto(s)
Amodiaquina/farmacología , Antimaláricos/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Autofagia/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Lisosomas/efectos de los fármacos , Melanoma/tratamiento farmacológico , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Evaluación Preclínica de Medicamentos , Sinergismo Farmacológico , Metabolismo Energético/efectos de los fármacos , Humanos , Lisosomas/metabolismo , Melanoma/metabolismo , Melanoma/patología
17.
Biochem Pharmacol ; 83(9): 1229-40, 2012 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-22321511

RESUMEN

Pharmacological induction of oxidative and proteotoxic stress has recently emerged as a promising strategy for chemotherapeutic intervention targeting cancer cells. Guided by a differential phenotypic drug screen for novel lead compounds that selectively induce melanoma cell apoptosis without compromising viability of primary human melanocytes, we have focused on the cyclic pyridinyl-polythiazolyl peptide-antimicrobial thiostrepton. Using comparative gene expression-array analysis, the early cellular stress response induced by thiostrepton was examined in human A375 metastatic melanoma cells and primary melanocytes. Thiostrepton displayed selective antimelanoma activity causing early induction of proteotoxic stress with massive upregulation of heat shock (HSPA6, HSPA1A, DNAJB4, HSPB1, HSPH1, HSPA1L, CRYAB, HSPA5, DNAJA1), oxidative stress (HMOX1, GSR, SOD1), and ER stress response (DDIT3) gene expression, confirmed by immunodetection (Hsp70, Hsp70B', HO-1, phospho-eIF2α). Moreover, upregulation of p53, proapoptotic modulation of Bcl-2 family members (Bax, Noxa, Mcl-1, Bcl-2), and induction of apoptotic cell death were observed. Thiostrepton rapidly induced cellular oxidative stress followed by inactivation of chymotrypsin-like proteasomal activity and melanoma cell-directed accumulation of ubiquitinated proteins, not observed in melanocytes that were resistant to thiostrepton-induced apoptosis. Proteotoxic and apoptogenic effects were fully antagonized by antioxidant intervention. In RPMI 8226 multiple myeloma cells, known to be exquisitely sensitive to proteasome inhibition, early proteotoxic and apoptogenic effects of thiostrepton were confirmed by array analysis indicating pronounced upregulation of heat shock response gene expression. Our findings demonstrate that thiostrepton displays dual activity as a selective prooxidant and proteotoxic chemotherapeutic, suggesting feasibility of experimental intervention targeting metastatic melanoma and other malignancies including multiple myeloma.


Asunto(s)
Melanocitos/efectos de los fármacos , Melanoma/tratamiento farmacológico , Estrés Oxidativo/efectos de los fármacos , Tioestreptona/farmacología , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Células Cultivadas , Chaperón BiP del Retículo Endoplásmico , Células Epidérmicas , Epidermis/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Proteínas HSP70 de Choque Térmico/genética , Respuesta al Choque Térmico/efectos de los fármacos , Respuesta al Choque Térmico/genética , Hemo-Oxigenasa 1/genética , Humanos , Melanocitos/metabolismo , Melanoma/metabolismo , Melanoma/patología , Mieloma Múltiple/tratamiento farmacológico , Complejo de la Endopetidasa Proteasomal/metabolismo , Inhibidores de Proteasoma , Proteínas Proto-Oncogénicas c-bcl-2/genética , Células Tumorales Cultivadas , Proteína X Asociada a bcl-2/genética
18.
Photochem Photobiol ; 86(6): 1307-17, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20946361

RESUMEN

Solar UVA exposure plays a causative role in skin photoaging and photocarcinogenesis. Here, we describe the proteomic identification of novel UVA-targets in human dermal fibroblasts following a two-dimensional-difference-gel-electrophoresis (2D-DIGE) approach. Fibroblasts were exposed to noncytotoxic doses of UVA or left untreated, and total protein extracts underwent CyDye-labeling followed by 2D-DIGE/mass-spectrometric identification of differentially expressed proteins, confirmed independently by immunodetection. The protein displaying the most pronounced UVA-induced upregulation was identified as the nucleolar protein nucleophosmin. The protein undergoing the most pronounced UVA-induced downregulation was identified as cathepsin B, a lysosomal cysteine-protease displaying loss of enzymatic activity and altered maturation after cellular UVA exposure. Extensive lysosomal accumulation of lipofuscin-like autofluorescence and osmiophilic material occurred in UVA-exposed fibroblasts as detected by confocal fluorescence microscopy and transmission electron microscopy, respectively. Array analysis indicated UVA-induced upregulation of oxidative stress response gene expression, and UVA-induced loss of cathepsin B enzymatic activity in fibroblasts was suppressed by antioxidant intervention. Pharmacological cathepsin B inhibition using CA074Me mimicked UVA-induced accumulation of lysosomal autofluorescence and deficient cathepsin B maturation. Taken together, these data support the hypothesis that cathepsin B is a crucial target of UVA-induced photo-oxidative stress causatively involved in dermal photodamage through the impairment of lysosomal removal of lipofuscin.


Asunto(s)
Catepsina B/metabolismo , Proteínas Nucleares/metabolismo , Piel/metabolismo , Piel/efectos de la radiación , Rayos Ultravioleta/efectos adversos , Acetilcisteína/farmacología , Antioxidantes/farmacología , Línea Celular , Dipéptidos/farmacología , Fibroblastos/metabolismo , Fibroblastos/efectos de la radiación , Perfilación de la Expresión Génica , Humanos , Lipofuscina/metabolismo , Lisosomas/metabolismo , Nucleofosmina , Estrés Oxidativo , Proteómica , Envejecimiento de la Piel/genética , Envejecimiento de la Piel/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA