Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
PLoS Pathog ; 11(12): e1005289, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26624286

RESUMEN

Reverse transcription is the central defining feature of HIV-1 replication. We previously reported that the cellular eukaryotic elongation factor 1 (eEF1) complex associates with the HIV-1 reverse transcription complex (RTC) and the association is important for late steps of reverse transcription. Here we show that association between the eEF1 and RTC complexes occurs by a strong and direct interaction between the subunit eEF1A and reverse transcriptase (RT). Using biolayer interferometry and co-immunoprecipitation (co-IP) assays, we show that association between the eEF1 and RTC complexes occurs by a strong (KD ~3-4 nM) and direct interaction between eEF1A and reverse transcriptase (RT). Biolayer interferometry analysis of cell lysates with titrated levels of eEF1A indicates it is a predominant cellular RT binding protein. Both the RT thumb and connection domains are required for interaction with eEF1A. A single amino acid mutation, W252A, within the thumb domain impaired co-IP between eEF1A and RT, and also significantly reduced the efficiency of late reverse transcription and virus replication when incorporated into infectious HIV-1. Molecular modeling analysis indicated that interaction between W252 and L303 are important for RT structure, and their mutation to alanine did not impair heterodimerisation, but negatively impacted interaction with eEF1A. Didemnin B, which specifically binds eEF1A, potently inhibited HIV-1 reverse transcription by greater than 2 logs at subnanomolar concentrations, especially affecting reverse transcription late DNA synthesis. Analysis showed reduced levels of RTCs from HIV-1-infected HEK293T treated with didemnin B compared to untreated cells. Interestingly, HIV-1 with a W252A RT mutation was resistant to didemnin B negative effects showing that didemnin B affects HIV-1 by targeting the RT-eEF1A interaction. The combined evidence indicates a direct interaction between eEF1A and RT is crucial for HIV reverse transcription and replication, and the RT-eEF1A interaction is a potential drug target.


Asunto(s)
Infecciones por VIH/metabolismo , Transcriptasa Inversa del VIH/metabolismo , VIH-1/fisiología , Factor 1 de Elongación Peptídica/metabolismo , Transcripción Reversa/fisiología , Replicación Viral/fisiología , Ensayo de Inmunoadsorción Enzimática , Células HEK293 , Humanos , Inmunoprecipitación
2.
Proc Natl Acad Sci U S A ; 109(24): 9587-92, 2012 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-22628567

RESUMEN

Cellular proteins have been implicated as important for HIV-1 reverse transcription, but whether any are reverse transcription complex (RTC) cofactors or affect reverse transcription indirectly is unclear. Here we used protein fractionation combined with an endogenous reverse transcription assay to identify cellular proteins that stimulated late steps of reverse transcription in vitro. We identified 25 cellular proteins in an active protein fraction, and here we show that the eEF1A and eEF1G subunits of eukaryotic elongation factor 1 (eEF1) are important components of the HIV-1 RTC. eEF1A and eEF1G were identified in fractionated human T-cell lysates as reverse transcription cofactors, as their removal ablated the ability of active protein fractions to stimulate late reverse transcription in vitro. We observed that the p51 subunit of reverse transcriptase and integrase, two subunits of the RTC, coimmunoprecipitated with eEF1A and eEF1G. Moreover eEF1A and eEF1G associated with purified RTCs and colocalized with reverse transcriptase following infection of cells. Reverse transcription in cells was sharply down-regulated when eEF1A or eEF1G levels were reduced by siRNA treatment as a result of reduced levels of RTCs in treated cells. The combined evidence indicates that these eEF1 subunits are critical RTC stability cofactors required for efficient completion of reverse transcription. The identification of eEF1 subunits as unique RTC components provides a basis for further investigations of reverse transcription and trafficking of the RTC to the nucleus.


Asunto(s)
Transcriptasa Inversa del VIH/metabolismo , VIH-1/enzimología , Factor 1 de Elongación Peptídica/metabolismo , Línea Celular , Cromatografía Liquida , Regulación hacia Abajo , Electroforesis en Gel de Poliacrilamida , Humanos , Inmunoprecipitación , Factor 1 de Elongación Peptídica/genética , ARN Interferente Pequeño , Espectrometría de Masas en Tándem , Transcripción Genética
3.
Zhonghua Liu Xing Bing Xue Za Zhi ; 28(6): 593-6, 2007 Jun.
Artículo en Zh | MEDLINE | ID: mdl-17939392

RESUMEN

OBJECTIVE: In order to investigate the positive rate of streptococcus suis type 2 and the genes of their suilysin (sly), extracellular protein (epf) and muramidasa-released protein ( mrp) and to understand the antibiotic susceptibility of S. suis type 2. METHODS: S. suis type 2, isolated from slaughtered healthy pig's tonsil in 10 county area of Guangxi, were identified by Multiplex PCR, and the genes of their sly, epf, mrp and the antimicrobial sensitivity analysis were performed. RESULTS: 1105 strains of Streptococcus including 667 strains of S. suis and 33 strains of S. suis type 2 were detected from 1179 samples. In these S. suis type 2 strains, there were 22 strains of sly + mrp + epf+ type,1 strain of sly + mrp + epf - type, 2 strains of sly - mrp + epf + type, 7 strains of sly - mrp + epf - type and 1 strain of sly - mrp - epf- type. When these strains were subjected to be tested with penicillin, eritrocina, vacocin, gentamycin, specti-nomysin, enraxacin, ciprofloxaxin, cephalothin VI, sulfadiazine sodium, cyantin, mycifradin, amikacin and achromcin, some were found to be resistant to but most strains were susceptible to cephalothin VI, penicillin and enraxacin. There were 31, 29 and 27 strains over medium sensitivity, respectively, but 28 and 27 resistant strains to amikacin and achromcin were found. CONCLUSION: The positive rate of S. suis type 2 in clinical healthy pigs was low (2.8%) and did not show obvious difference between the counties with or without a history of S. suis infection. All the isolated strains were susceptible to cephalothin VI, but most strains were virulent.


Asunto(s)
Epidemiología Molecular/métodos , Infecciones Estreptocócicas/epidemiología , Infecciones Estreptocócicas/microbiología , Streptococcus suis/genética , Enfermedades de los Porcinos/epidemiología , Enfermedades de los Porcinos/microbiología , Animales , Antibacterianos/farmacología , Antígenos Bacterianos/genética , Proteínas Bacterianas/genética , Farmacorresistencia Bacteriana/genética , Proteínas Hemolisinas/genética , Pruebas de Sensibilidad Microbiana , Reacción en Cadena de la Polimerasa , Infecciones Estreptocócicas/genética , Streptococcus suis/efectos de los fármacos , Streptococcus suis/patogenicidad , Porcinos , Enfermedades de los Porcinos/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA