RESUMEN
A facile synthetic pathway for sildenafil has been developed. This approach is characterized by a ligand-free Ullmann-type copper-catalyzed coupling reaction to construct sildenafil and its derivative, pyrrazolo[4,3-d]pyrimidin-7-one ring, with yields of 79% and 82%, respectively, in a convergent fashion by connecting key building blocks halo-pyrazole moiety 16c with 2-ethoxybenzamidine and 2-ethoxy-5-[(4-methylpiperazin-1-yl)sulfonyl]benzamidine in a one-pot reaction. Thus, this approach circumvents the need to use nitric/sulfuric acid for nitration, a costly Pd-catalyst for reduction, and coupling agents encountered in the reported processes.
RESUMEN
This review provides a comprehensive analysis of synthetic routes for tecovirimat, an antiviral drug used to treat orthopoxvirus infections, including monkeypox and smallpox. We focus on the scale-up synthesis of key intermediates, including cycloheptatriene, as documented in the published literature and patent records. The review highlights the efficiency, yield, and purity of these approaches, as well as the minimization of genotoxic and in-process impurities. Furthermore, we critically evaluate the recently reported optimized industrial-scale synthesis process, highlighting its advantages and limitations, and identifying avenues for further improvement. By obtaining insights from the published literature and patent records, this review elucidates the current state of knowledge regarding key synthesis parameters influencing tecovirimat production and emphasizes the critical importance of optimizing synthesis techniques to achieve remarkable improvements in safety and environmental impact. This review serves as a valuable resource for researchers and industry professionals in the field of R&D and production of APIs, particularly in expediting the safe and efficient industrial production of tecovirimat.
RESUMEN
We present an improved copper-catalyzed cyclization for an efficient synthesis of benzimidazoles from o-bromoarylamine and nitriles, under mild and ligand-free conditions. The optimal conditions yielded exceptional products of up to 98%, demonstrating the broad applicability of this synthetic strategy in generating a wide range of valuable imidazole derivatives. This methodology enables the efficient synthesis of various substituted benzimidazole derivatives and offers an environmentally friendly alternative to conventional methods. By eliminating the use of harsh reagents and high temperatures associated with traditional synthesis approaches, this method proves to be more efficient and robust. Notably, we successfully applied this synthetic approach to the synthesis of bendazol and thiabendazole, yielding 82% and 78%, respectively, on a 100 gram scale.
RESUMEN
Amides are important intermediates in organic chemistry and the pharmaceutical industry, but their low reactivity requires catalysts and/or severe reaction conditions for esterification. Here, a novel approach was devised to convert amides into esters without the use of transition metals. The method effectively overcomes the inherent low reactivity of amides by employing dimethylsulfate-mediated reaction to activate the C-N bonds. To confirm the proposed reaction mechanism, control experiments and density functional theory (DFT) calculations were conducted. The method demonstrates a wide array of substrates, including amides with typical H/alkyl/aryl substitutions, N,N-disubstituted amides, amides derived from alkyl, aryl, or vinyl carboxylic acids, and even amino acid substrates with stereocentres. Furthermore, we have shown the effectiveness of dimethylsulfate in removing acyl protective groups in amino derivatives. This study presents a method that offers efficiency and cost-effectiveness in broadening the esterification capabilities of amides, thereby facilitating their increased utilization as synthetic compounds in diverse transformations.
RESUMEN
This article delineates the systematic identification, synthesis, and impurity control methods used during the manufacturing process development of tecovirimat, an antiviral drug that treats monkeypox. Critical impurities were synthesized, and their chemical structure was confirmed through NMR analysis, GC, and HPLC mass spectrometry. The results established a thorough approach to identify, address, and control impurities to produce high-quality tecovirimat drug substance in accordance with International Conference on Harmonization (ICH)-compliant standards. This study is the first of its kind to evaluate both process and genotoxic impurities in tecovirimat, demonstrating effective control measures during commercial sample investigations and scaling up to a 60-kg batch size. The findings highlight the importance of critical impurity characterization and control in pharmaceutical development and production to ensure the safety and efficacy of the final product.
RESUMEN
A facile synthesis of benzimidazoles was described by a one-pot process containing acylation-cyclization of N-arylamidoxime. This method provided an alternative synthesis of benzimidazoles with a certain diversity of substituted groups in acceptable yields (up to 96%). More importantly, the construction of bis-benzimidazole (8), the key intermediate for making telmisartan, was achieved by adopting this method that enabled avoiding the undesired nitration with nitric/sulfuric acid and the cyclization in polyphosphoric acid in the existing operations.