RESUMEN
Novel magnetic and fluorinated porous carbons (M-FPCs) with high fluorine content, large pore volume and specific surface area were first prepared by carbonizing and further fluorinating Fe-Zr bimetal-organic frameworks. The M-FPCs exhibit excellent adsorption performance toward perfluorinated compounds (PFCs), and the maximal adsorption capacity ranges from 518.1 to 919.3 mg g-1 for various PFCs. Based on this property, an environmental analytical method of dispersive solid-phase extraction (DSPE) using M-FPCs as adsorbents coupled with ultra-high-performance liquid chromatography-mass spectrometry (UPLC-MS) was developed for the detection of trace PFCs. The linear range was as wide as 10-200 ng L-1, and low limit of detection (0.02-0.16 ng L-1) and good precision (relative standard deviation less than 6.11% for intra-day and inter-day) were achieved. This method was applied to the detection of trace PFCs in environmental water and soil samples with satisfactory results.