Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 360
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 619(7971): 801-810, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37438528

RESUMEN

The function of a cell is defined by its intrinsic characteristics and its niche: the tissue microenvironment in which it dwells. Here we combine single-cell and spatial transcriptomics data to discover cellular niches within eight regions of the human heart. We map cells to microanatomical locations and integrate knowledge-based and unsupervised structural annotations. We also profile the cells of the human cardiac conduction system1. The results revealed their distinctive repertoire of ion channels, G-protein-coupled receptors (GPCRs) and regulatory networks, and implicated FOXP2 in the pacemaker phenotype. We show that the sinoatrial node is compartmentalized, with a core of pacemaker cells, fibroblasts and glial cells supporting glutamatergic signalling. Using a custom CellPhoneDB.org module, we identify trans-synaptic pacemaker cell interactions with glia. We introduce a druggable target prediction tool, drug2cell, which leverages single-cell profiles and drug-target interactions to provide mechanistic insights into the chronotropic effects of drugs, including GLP-1 analogues. In the epicardium, we show enrichment of both IgG+ and IgA+ plasma cells forming immune niches that may contribute to infection defence. Overall, we provide new clarity to cardiac electro-anatomy and immunology, and our suite of computational approaches can be applied to other tissues and organs.


Asunto(s)
Microambiente Celular , Corazón , Multiómica , Miocardio , Humanos , Comunicación Celular , Fibroblastos/citología , Ácido Glutámico/metabolismo , Corazón/anatomía & histología , Corazón/inervación , Canales Iónicos/metabolismo , Miocardio/citología , Miocardio/inmunología , Miocardio/metabolismo , Miocitos Cardíacos/citología , Neuroglía/citología , Pericardio/citología , Pericardio/inmunología , Células Plasmáticas/inmunología , Receptores Acoplados a Proteínas G/metabolismo , Nodo Sinoatrial/anatomía & histología , Nodo Sinoatrial/citología , Nodo Sinoatrial/fisiología , Sistema de Conducción Cardíaco/anatomía & histología , Sistema de Conducción Cardíaco/citología , Sistema de Conducción Cardíaco/metabolismo
2.
Nature ; 600(7889): 536-542, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34819669

RESUMEN

The cell is a multi-scale structure with modular organization across at least four orders of magnitude1. Two central approaches for mapping this structure-protein fluorescent imaging and protein biophysical association-each generate extensive datasets, but of distinct qualities and resolutions that are typically treated separately2,3. Here we integrate immunofluorescence images in the Human Protein Atlas4 with affinity purifications in BioPlex5 to create a unified hierarchical map of human cell architecture. Integration is achieved by configuring each approach as a general measure of protein distance, then calibrating the two measures using machine learning. The map, known as the multi-scale integrated cell (MuSIC 1.0), resolves 69 subcellular systems, of which approximately half are to our knowledge undocumented. Accordingly, we perform 134 additional affinity purifications and validate subunit associations for the majority of systems. The map reveals a pre-ribosomal RNA processing assembly and accessory factors, which we show govern rRNA maturation, and functional roles for SRRM1 and FAM120C in chromatin and RPS3A in splicing. By integration across scales, MuSIC increases the resolution of imaging while giving protein interactions a spatial dimension, paving the way to incorporate diverse types of data in proteome-wide cell maps.


Asunto(s)
Cromosomas , Proteoma , Antígenos Nucleares/genética , Antígenos Nucleares/metabolismo , Cromatina/genética , Cromosomas/metabolismo , Humanos , Proteínas Asociadas a Matriz Nuclear/metabolismo , Proteoma/metabolismo , ARN Ribosómico , Proteínas de Unión al ARN/genética
3.
EMBO J ; 41(23): e110928, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36245268

RESUMEN

Each vertebrate species appears to have a unique timing mechanism for forming somites along the vertebral column, and the process in human remains poorly understood at the molecular level due to technical and ethical limitations. Here, we report the reconstitution of human segmentation clock by direct reprogramming. We first reprogrammed human urine epithelial cells to a presomitic mesoderm (PSM) state capable of long-term self-renewal and formation of somitoids with an anterior-to-posterior axis. By inserting the RNA reporter Pepper into HES7 and MESP2 loci of these iPSM cells, we show that both transcripts oscillate in the resulting somitoids at ~5 h/cycle. GFP-tagged endogenous HES7 protein moves along the anterior-to-posterior axis during somitoid formation. The geo-sequencing analysis further confirmed anterior-to-posterior polarity and revealed the localized expression of WNT, BMP, FGF, and RA signaling molecules and HOXA-D family members. Our study demonstrates the direct reconstitution of human segmentation clock from somatic cells, which may allow future dissection of the mechanism and components of such a clock and aid regenerative medicine.


Asunto(s)
Mesodermo , Somitos , Humanos , Somitos/metabolismo , Mesodermo/metabolismo , Transducción de Señal , Regulación del Desarrollo de la Expresión Génica , Tipificación del Cuerpo/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo
4.
Nature ; 572(7769): 373-377, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31261374

RESUMEN

Net anthropogenic emissions of carbon dioxide (CO2) must approach zero by mid-century (2050) in order to stabilize the global mean temperature at the level targeted by international efforts1-5. Yet continued expansion of fossil-fuel-burning energy infrastructure implies already 'committed' future CO2 emissions6-13. Here we use detailed datasets of existing fossil-fuel energy infrastructure in 2018 to estimate regional and sectoral patterns of committed CO2 emissions, the sensitivity of such emissions to assumed operating lifetimes and schedules, and the economic value of the associated infrastructure. We estimate that, if operated as historically, existing infrastructure will cumulatively emit about 658 gigatonnes of CO2 (with a range of 226 to 1,479 gigatonnes CO2, depending on the lifetimes and utilization rates assumed). More than half of these emissions are predicted to come from the electricity sector; infrastructure in China, the USA and the 28 member states of the European Union represents approximately 41 per cent, 9 per cent and 7 per cent of the total, respectively. If built, proposed power plants (planned, permitted or under construction) would emit roughly an extra 188 (range 37-427) gigatonnes CO2. Committed emissions from existing and proposed energy infrastructure (about 846 gigatonnes CO2) thus represent more than the entire carbon budget that remains if mean warming is to be limited to 1.5 degrees Celsius (°C) with a probability of 66 to 50 per cent (420-580 gigatonnes CO2)5, and perhaps two-thirds of the remaining carbon budget if mean warming is to be limited to less than 2 °C (1,170-1,500 gigatonnes CO2)5. The remaining carbon budget estimates are varied and nuanced14,15, and depend on the climate target and the availability of large-scale negative emissions16. Nevertheless, our estimates suggest that little or no new CO2-emitting infrastructure can be commissioned, and that existing infrastructure may need to be retired early (or be retrofitted with carbon capture and storage technology) in order to meet the Paris Agreement climate goals17. Given the asset value per tonne of committed emissions, we suggest that the most cost-effective premature infrastructure retirements will be in the electricity and industry sectors, if non-emitting alternatives are available and affordable4,18.


Asunto(s)
Dióxido de Carbono/análisis , Electricidad , Combustibles Fósiles/provisión & distribución , Calentamiento Global/prevención & control , Objetivos , Cooperación Internacional/legislación & jurisprudencia , Temperatura , Atmósfera/química , Combustibles Fósiles/economía , Calentamiento Global/economía , Gas Natural/provisión & distribución
5.
J Cell Mol Med ; 28(6): e18129, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38426936

RESUMEN

ATP citrate lyase (ACLY), as a key enzyme in lipid metabolism, plays an important role in energy metabolism and lipid biosynthesis of a variety of tumours. Many studies have shown that ACLY is highly expressed in various tumours, and its pharmacological or gene inhibition significantly inhibits tumour growth and progression. However, the roles of ACLY in oesophageal squamous cell carcinoma (ESCC) remain unclear. Here, our data showed that ACLY inhibitor significantly attenuated cell proliferation, migration, invasion and lipid synthesis in different ESCC cell lines, whereas the proliferation, migration, invasion and lipid synthesis of ESCC cells were enhanced after ACLY overexpression. Furthermore, ACLY inhibitor dramatically suppressed tumour growth and lipid metabolism in ESCC cells xenografted tumour model, whereas ACLY overexpression displayed the opposite effect. Mechanistically, ACLY protein harboured acetylated modification and interacted with SIRT2 protein in ESCC cells. The SIRT2 inhibitor AGK2 significantly increased the acetylation level of ACLY protein and inhibited the proliferation and migration of ESCC cells, while overexpression of ACLY partially reversed the inhibitory effect of AGK2 on ESCC cells. Overall, these results suggest that targeting the SIRT2/ACLY signalling axis may be a potential therapeutic strategy for ESCC patients.


Asunto(s)
Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Humanos , Carcinoma de Células Escamosas de Esófago/genética , ATP Citrato (pro-S)-Liasa , Sirtuina 2/genética , Sirtuina 2/metabolismo , Proliferación Celular , Neoplasias Esofágicas/metabolismo , Lípidos , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica
6.
Mol Cancer ; 23(1): 85, 2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38678233

RESUMEN

Nuclear condensates have been shown to regulate cell fate control, but its role in oncogenic transformation remains largely unknown. Here we show acquisition of oncogenic potential by nuclear condensate remodeling. The proto-oncogene SS18 and its oncogenic fusion SS18-SSX1 can both form condensates, but with drastically different properties and impact on 3D genome architecture. The oncogenic condensates, not wild type ones, readily exclude HDAC1 and 2 complexes, thus, allowing aberrant accumulation of H3K27ac on chromatin loci, leading to oncogenic expression of key target genes. These results provide the first case for condensate remodeling as a transforming event to generate oncogene and such condensates can be targeted for therapy. One sentence summary: Expulsion of HDACs complexes leads to oncogenic transformation.


Asunto(s)
Histona Desacetilasa 1 , Histona Desacetilasa 2 , Proto-Oncogenes Mas , Humanos , Histona Desacetilasa 1/metabolismo , Histona Desacetilasa 1/genética , Histona Desacetilasa 2/metabolismo , Histona Desacetilasa 2/genética , Núcleo Celular/metabolismo , Cromatina/metabolismo , Cromatina/genética , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Proteínas de Fusión Oncogénica/genética , Proteínas de Fusión Oncogénica/metabolismo , Histonas/metabolismo , Animales
7.
Hum Brain Mapp ; 45(8): e26750, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38853710

RESUMEN

The triple-network model has been widely applied in neuropsychiatric disorders including autism spectrum disorder (ASD). However, the mechanism of causal regulations within the triple-network and their relations with symptoms of ASD remains unclear. 81 male ASD and 80 well matched typically developing control (TDC) were included in this study, recruited from Autism Brain Image Data Exchange-I datasets. Spatial reference-based independent component analysis was used to identify the anterior and posterior part of default-mode network (aDMN and pDMN), salience network (SN), and bilateral executive-control network (ECN) from resting-state functional magnetic resonance imaging data. Spectral dynamic causal model and parametric empirical Bayes with Bayesian model reduction/average were adopted to explore the effective connectivity (EC) within triple-network and the relationship between EC and autism diagnostic observation schedule (ADOS) scores. After adjusting for age and site effect, ASD and TDC groups both showed inhibition patterns. Compared with TDC, ASD group showed weaker self-inhibition in aDMN and pDMN, stronger inhibition in pDMN→aDMN, weaker inhibition in aDMN→LECN, pDMN→SN, LECN→SN, and LECN→RECN. Furthermore, negative relationships between ADOS scores and pDMN self-inhibition strength, as well as with the EC of pDMN→aDMN were observed in ASD group. The present study reveals imbalanced effective connections within triple-networks in ASD children. More attentions should be focused at the pDMN, which modulates the core symptoms of ASD and may serve as an important region for ASD diagnosis and the target region for ASD treatments.


Asunto(s)
Trastorno del Espectro Autista , Red en Modo Predeterminado , Imagen por Resonancia Magnética , Humanos , Trastorno del Espectro Autista/diagnóstico por imagen , Trastorno del Espectro Autista/fisiopatología , Masculino , Niño , Red en Modo Predeterminado/diagnóstico por imagen , Red en Modo Predeterminado/fisiopatología , Conectoma , Red Nerviosa/diagnóstico por imagen , Red Nerviosa/fisiopatología , Función Ejecutiva/fisiología , Adolescente , Teorema de Bayes
8.
Biochem Biophys Res Commun ; 706: 149747, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38479243

RESUMEN

Nobiletin is a natural flavonoid found in citrus fruits with beneficial effects, including anti-inflammatory, anti-cancer and anti-oxidation effects. The aim of this study was to investigate whether nobiletin improves mitochondrial function in porcine oocytes and examine the underlying mechanism. Oocytes enclosed by cumulus cells were cultured in TCM-199 for 44 h with 0.1% dimethyl sulfoxide (control), or supplemented with 5, 10, 25, and 50 µM of nobiletin (Nob5, Nob10, Nob25, and Nob50, respectively). Oocyte maturation rate was significantly enhanced in Nob10 (70.26 ± 0.45%) compared to the other groups (control: 60.12 ± 0.47%; Nob5: 59.44 ± 1.63%; Nob25: 63.15 ± 1.38%; Nob50: 46.57 ± 1.19%). The addition of nobiletin reduced the levels of reactive oxygen species and increased glutathione levels. Moreover, Nob10 promoted mitochondrial biogenesis by upregulating the protein levels of sirtuin 1 (SIRT1) and peroxisome proliferator-activated receptor-gamma coactivator 1α (PGC-1α). This resulted in an increase in the number of active mitochondria, mitochondrial DNA copy number, mitochondrial membrane potential, and ATP production, thereby enhancing mitochondrial function. The protein level of p53 decreased, followed by the phosphorylation of B-cell lymphoma 2, suggesting a reduction in mitochondria-mediated apoptosis in the Nob10 group. Additionally, the release of cytochrome c from the mitochondria was significantly diminished along with a decrease in the protein expression of caspase 3. Thus, nobiletin has a great potential to promote the in vitro maturation of porcine oocytes by suppressing oxidative stress and promoting mitochondrial function through the upregulation of the SIRT1/PGC-1α signaling pathway.


Asunto(s)
Flavonas , Mitocondrias , Sirtuina 1 , Animales , Porcinos , Sirtuina 1/metabolismo , Mitocondrias/metabolismo , Transducción de Señal , Oocitos/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo
9.
Mol Carcinog ; 63(5): 897-911, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38353358

RESUMEN

Increasing evidence has demonstrated that glutaminase (GLS) as a key mitochondrial enzyme plays a pivotal role in glutaminolysis, which widely participates in glutamine metabolism serving as main energy sources and building blocks for tumor growth. However, the roles and molecular mechanisms of GLS in esophageal squamous cell carcinoma (ESCC) remains unknown. Here, we found that GLS was highly expressed in ESCC tissues and cells. GLS inhibitor CB-839 significantly suppressed cell proliferation, colony formation, migration and invasion of ESCC cells, whereas GLS overexpression displayed the opposite effects. In addition, CB-839 markedly suppressed glucose consumption and lactate production, coupled with the downregulation of glycolysis-related proteins HK2, PFKM, PKM2 and LDHA, whereas GLS overexpression exhibited the adverse results. In vivo animal experiment revealed that CB-839 dramatically suppressed tumor growth, whereas GLS overexpression promoted tumor growth in ESCC cells xenografted nude mice. Mechanistically, GLS was localized in mitochondria of ESCC cells, which interacted with PDK1 protein. CB-839 attenuated the interaction of GLS and PDK1 in ESCC cells by suppressing PDK1 expression, which further evoked the downregulation of p-PDHA1 (s293), however, GLS overexpression markedly enhanced the level of p-PDHA1 (s293). These findings suggest that interaction of GLS with PDK1 accelerates the glycolysis of ESCC cells by inactivating PDH enzyme, and thus targeting GLS may be a novel therapeutic approach for ESCC patients.


Asunto(s)
Bencenoacetamidas , Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Glutaminasa , Glucólisis , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora , Tiadiazoles , Animales , Humanos , Ratones , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/patología , Carcinoma de Células Escamosas de Esófago/genética , Carcinoma de Células Escamosas de Esófago/metabolismo , Carcinoma de Células Escamosas de Esófago/patología , Regulación Neoplásica de la Expresión Génica , Glutaminasa/genética , Glutaminasa/metabolismo , Glucólisis/genética , Ratones Desnudos , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora/genética , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora/metabolismo
10.
Neuropathol Appl Neurobiol ; 50(3): e12992, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38831600

RESUMEN

PURPOSE: Radiation-induced brain injury, one of the side effects of cranial radiotherapy in tumour patients, usually results in durable and serious cognitive disorders. Microglia are important innate immune-effector cells in the central nervous system. However, the interaction between microglia and neurons in radiation-induced brain injury remains uncharacterised. METHODS AND MATERIALS: We established a microglia-neuron indirect co-culture model to assess the interaction between them. Microglia exposed to radiation were examined for pyroptosis using lactate dehydrogenase (LDH) release, Annexin V/PI staining, SYTOX staining and western blot. The role of nucleotide-binding oligomerisation domain-like receptor family pyrin domain containing 3 (NLRP3) was investigated in microglia exposed to radiation and in mouse radiation brain injury model through siRNA or inhibitor. Mini-mental state examination and cytokines in blood were performed in 23 patients who had experienced cranial irradiation. RESULTS: Microglia exerted neurotoxic features after radiation in the co-culture model. NLRP3 was up-regulated in microglia exposed to radiation, and then caspase-1 was activated. Thus, the gasdermin D protein was cleaved, and it triggered pyroptosis in microglia, which released inflammatory cytokines. Meanwhile, treatment with siRNA NLRP3 in vitro and NLRP3 inhibitor in vivo attenuated the damaged neuron cell and cognitive impairment, respectively. What is more, we found that the patients after radiation with higher IL-6 were observed to have a decreased MMSE score. CONCLUSIONS: These findings indicate that radiation-induced pyroptosis in microglia may promote radiation-induced brain injury via the secretion of neurotoxic cytokines. NLRP3 was evaluated as an important mediator in radiation-induced pyroptosis and a promising therapeutic target for radiation-induced brain injury.


Asunto(s)
Lesiones Encefálicas , Microglía , Proteína con Dominio Pirina 3 de la Familia NLR , Piroptosis , Piroptosis/efectos de la radiación , Piroptosis/fisiología , Microglía/metabolismo , Microglía/efectos de la radiación , Microglía/patología , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Animales , Ratones , Humanos , Lesiones Encefálicas/metabolismo , Lesiones Encefálicas/patología , Lesiones Encefálicas/etiología , Masculino , Neuronas/metabolismo , Neuronas/patología , Neuronas/efectos de la radiación , Técnicas de Cocultivo , Traumatismos por Radiación/patología , Traumatismos por Radiación/metabolismo , Femenino , Ratones Endogámicos C57BL , Persona de Mediana Edad
11.
Microb Pathog ; 188: 106560, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38272327

RESUMEN

Inflammatory bowel disease (IBD) is a chronic, recurrent inflammatory disease caused by the destruction of the intestinal mucosal epithelium that affects a growing number of people worldwide. Although the etiology of IBD is complex and still elucidated, the role of dysbiosis and dysregulated proteolysis is well recognized. Various studies observed altered composition and diversity of gut microbiota, as well as increased proteolytic activity (PA) in serum, plasma, colonic mucosa, and fecal supernatant of IBD compared to healthy individuals. The imbalance of intestinal microecology and intestinal protein hydrolysis were gradually considered to be closely related to IBD. Notably, the pivotal role of intestinal microbiota in maintaining proteolytic balance received increasing attention. In summary, we have speculated a mesmerizing story, regarding the hidden role of PA and microbiota-derived PA hidden in IBD. Most importantly, we provided the diagnosis and therapeutic targets for IBD as well as the formulation of new treatment strategies for other digestive diseases and protease-related diseases.


Asunto(s)
Microbioma Gastrointestinal , Enfermedades Inflamatorias del Intestino , Humanos , Proteolisis , Enfermedades Inflamatorias del Intestino/terapia , Intestinos , Mucosa Intestinal , Disbiosis
12.
Opt Lett ; 49(10): 2849-2852, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38748178

RESUMEN

Energy-time (E-T) entanglement is widely employed in long-distance quantum entanglement distribution due to its strong robustness against transmission fluctuations. In this Letter, we report what we believe to be the first silicon monolithically integrated E-T entanglement system, which integrates the photon sources, wavelength demultiplexers, and Franson interferometers on a single chip. Also, by utilizing low-loss multimode waveguides in Franson interferometers, we measured an on-chip quantum interference visibility of 99.66% (±0.47%), to our knowledge one of the highest values for integrated E-T entanglement systems reported to date. The quantum interference after 1- and 5-km fiber propagation shows visibilities of 96.72% (±0.78%) and 97.46% (±1.23%), respectively. These results demonstrate the potential of using silicon monolithic integration for advance E-T entanglement-based quantum communication networks.

13.
Opt Lett ; 49(10): 2721-2724, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38748145

RESUMEN

A 2 × 2 switch based on differential effective thermo-optic (TO) coefficients of waveguide supermodes is proposed and experimentally demonstrated as a more compact alternative to Mach-Zehnder interferometer (MZI)-based switches used in coherent photonic matrix processing networks. The total waveguide width of the device is 1.335 µm. Using a novel, to the best of our knowledge, supermode coupler with a wideband 3-dB coupling ratio, the switch was engineered to have on-off extinction ratios (ERs) ranging from 24.1 to 38.9 dB for the two output ports over a 135 nm bandwidth. Insertion losses (ILs) of less than 0.3 and 0.4 dB over the 100 nm bandwidth were measured for bar and cross transmission, respectively. The waveguide width error tolerance is +/-30 nm. The proposed device has the potential to improve the scalability of a programmable coherent mesh for matrix processing by increasing the integration density without sacrificing the overall accuracy or limiting the operational wavelength range of the mesh.

14.
Opt Lett ; 49(11): 2966-2969, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38824304

RESUMEN

Over the past decades, spin qubits in silicon carbide (SiC) have emerged as promising platforms for a wide range of quantum technologies. The fluorescence intensity holds significant importance in the performance of quantum photonics, quantum information process, and sensitivity of quantum sensing. In this work, a dual-layer Au/SiO2 dielectric cavity is employed to enhance the fluorescence intensity of a shallow silicon vacancy ensemble in 4H-SiC. Experimental results demonstrate an effective fourfold augmentation in fluorescence counts at saturating laser power, corroborating our theoretical predictions. Based on this, we further investigate the influence of dielectric cavities on the contrast and linewidth of optically detected magnetic resonance (ODMR). There is a 1.6-fold improvement in magnetic field sensitivity. In spin echo experiments, coherence times remain constant regardless of the thickness of dielectric cavities. These experiments pave the way for broader applications of dielectric cavities in SiC-based quantum technologies.

15.
Circ Res ; 130(7): 1038-1055, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35196865

RESUMEN

BACKGROUND: The transcription factor BACH1 (BTB and CNC homology 1) suppressed endothelial cells (ECs) proliferation and migration and impaired angiogenesis in the ischemic hindlimbs of adult mice. However, the role and underlying mechanisms of BACH1 in atherosclerosis remain unclear. METHODS: Mouse models of atherosclerosis in endothelial cell (EC)-specific-Bach1 knockout mice were used to study the role of BACH1 in the regulation of atherogenesis and the underlying mechanisms. RESULTS: Genetic analyses revealed that coronary artery disease-associated risk variant rs2832227 was associated with BACH1 gene expression in carotid plaques from patients. BACH1 was upregulated in ECs of human and mouse atherosclerotic plaques. Endothelial Bach1 deficiency decreased turbulent blood flow- or western diet-induced atherosclerotic lesions, macrophage content in plaques, expression of endothelial adhesion molecules (ICAM1 [intercellular cell adhesion molecule-1] and VCAM1 [vascular cell adhesion molecule-1]), and reduced plasma TNF-α (tumor necrosis factor-α) and IL-1ß levels in atherosclerotic mice. BACH1 deletion or knockdown inhibited monocyte-endothelial adhesion and reduced oscillatory shear stress or TNF-α-mediated induction of endothelial adhesion molecules and/or proinflammatory cytokines in mouse ECs, human umbilical vein ECs, and human aortic ECs. Mechanistic studies showed that upon oscillatory shear stress or TNF-α stimulation, BACH1 and YAP (yes-associated protein) were induced and translocated into the nucleus in ECs. BACH1 upregulated YAP expression by binding to the YAP promoter. BACH1 formed a complex with YAP inducing the transcription of adhesion molecules. YAP overexpression in ECs counteracted the antiatherosclerotic effect mediated by Bach1-deletion in mice. Rosuvastatin inhibited BACH1 expression by upregulating microRNA let-7a in ECs, and decreased Bach1 expression in the vascular endothelium of hyperlipidemic mice. BACH1 was colocalized with YAP, and the expression of BACH1 was positively correlated with YAP and proinflammatory genes, as well as adhesion molecules in human atherosclerotic plaques. CONCLUSIONS: These data identify BACH1 as a mechanosensor of hemodynamic stress and reveal that the BACH1-YAP transcriptional network is essential to vascular inflammation and atherogenesis. BACH1 shows potential as a novel therapeutic target in atherosclerosis.


Asunto(s)
Aterosclerosis , Placa Aterosclerótica , Animales , Aterosclerosis/genética , Aterosclerosis/metabolismo , Aterosclerosis/prevención & control , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/farmacología , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Inflamación/genética , Inflamación/metabolismo , Inflamación/prevención & control , Ratones , Ratones Endogámicos C57BL , Placa Aterosclerótica/patología , Factores de Transcripción/metabolismo
16.
Inorg Chem ; 63(14): 6483-6492, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38531042

RESUMEN

Constructing a phosphor with multifunctional applications is an imperative challenge. Especially, highly thermostable luminescence of phosphor is indispensable for stable white-light-emitting diodes (LEDs). Nevertheless, good thermal quenching resistance behavior is unfavorable for a fluorescence intensity ratio (FIR)-based optical temperature sensor. Herein, a highly thermostable Ba3(ZnB5O10)PO4 (BZBP)-based phosphor is successfully achieved via replacing Ba2+ with Dy3+, demonstrating simultaneously promising lighting and thermometry utilizations. Under the excitation of 350 nm, the title phosphor only loses 12% of the initial intensity when the temperature is up to 473 K, ensuring sufficient luminescence thermostability for white-LED lighting. The white-LED device fabricated using the title phosphor emits high-quality white light with a high color rendering index (Ra = 93) and low correlated color temperature (CCT = 3996 K). Meanwhile, the yellow and blue emission intensities demonstrate a downtrend difference with rising temperature. Temperature sensing properties are assessed through FIR technology. The maximal relative sensitivity reaches as high as 0.0379 K-1 at 298 K. These results reveal that the title phosphor has a great potential for indoor lighting and thermometry applications.

17.
Eur Arch Psychiatry Clin Neurosci ; 274(2): 433-443, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37400684

RESUMEN

BACKGROUND: Dopamine receptor D2 (DRD2) TaqIA polymorphism has an influence on addiction treatment response and prognosis by mediating brain dopaminergic system efficacy. Insula is crucial for conscious urges to take drugs and maintain drug use. However, it remains unclear about the contribution of DRD2 TaqIA polymorphism to the regulation of insular on addiction behavioral and its relation with the therapeutic effect of methadone maintenance treatment (MMT). METHODS: 57 male former heroin dependents receiving stable MMT and 49 matched male healthy controls (HC) were enrolled. Salivary genotyping for DRD2 TaqA1 and A2 alleles, brain resting-state functional MRI scan and a 24-month follow-up for collecting illegal-drug-use information was conducted and followed by clustering of functional connectivity (FC) patterns of HC insula, insula subregion parcellation of MMT patients, comparing the whole brain FC maps between the A1 carriers and non-carriers and analyzing the correlation between the genotype-related FC of insula sub-regions with the retention time in MMT patients by Cox regression. RESULTS: Two insula subregions were identified: the anterior insula (AI) and the posterior insula (PI) subregion. The A1 carriers had a reduced FC between the left AI and the right dorsolateral prefrontal cortex (dlPFC) relative to no carriers. And this reduced FC was a poor prognostic factor for the retention time in MMT patients. CONCLUSION: DRD2 TaqIA polymorphism affects the retention time in heroin-dependent individuals under MMT by mediating the functional connectivity strength between left AI and right dlPFC, and the two brain regions are promising therapeutic targets for individualized treatment.


Asunto(s)
Dependencia de Heroína , Heroína , Humanos , Masculino , Heroína/uso terapéutico , Corteza Prefontal Dorsolateral , Polimorfismo Genético/genética , Dependencia de Heroína/diagnóstico por imagen , Dependencia de Heroína/tratamiento farmacológico , Dependencia de Heroína/genética , Metadona/uso terapéutico , Imagen por Resonancia Magnética , Receptores de Dopamina D2/genética
18.
Nutr Metab Cardiovasc Dis ; 34(7): 1649-1659, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38749785

RESUMEN

BACKGROUND AND AIMS: This study aimed to explore potential hub genes and pathways of plaque vulnerability and to investigate possible therapeutic targets for acute coronary syndrome (ACS). METHODS AND RESULTS: Four microarray datasets were downloaded from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs), weighted gene coexpression networks (WGCNA) and immune cell infiltration analysis (IIA) were used to identify the genes for plaque vulnerability. Then, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment, Disease Ontology, Gene Ontology annotation and protein-protein interaction (PPI) network analyses were performed to explore the hub genes. Random forest and artificial neural networks were constructed for validation. Furthermore, the CMap and Herb databases were employed to explore possible therapeutic targets. A total of 168 DEGs with an adjusted P < 0.05 and approximately 1974 IIA genes were identified in GSE62646. Three modules were detected and associated with CAD-Class, including 891 genes that can be found in GSE90074. After removing duplicates, 114 hub genes were used for functional analysis. GO functions identified 157 items, and 6 pathways were enriched for the KEGG pathway at adjusted P < 0.05 (false discovery rate, FDR set at < 0.05). Random forest and artificial neural network models were built based on the GSE48060 and GSE34822 datasets, respectively, to validate the previous hub genes. Five genes (GZMA, GZMB, KLRB1, KLRD1 and TRPM6) were selected, and only two of them (GZMA and GZMB) were screened as therapeutic targets in the CMap and Herb databases. CONCLUSION: We performed a comprehensive analysis and validated GZMA and GZMB as a target for plaque vulnerability, which provides a therapeutic strategy for the prevention of ACS. However, whether it can be used as a predictor in blood samples requires further experimental verification.


Asunto(s)
Biología Computacional , Bases de Datos Genéticas , Perfilación de la Expresión Génica , Redes Reguladoras de Genes , Placa Aterosclerótica , Mapas de Interacción de Proteínas , Humanos , Síndrome Coronario Agudo/genética , Síndrome Coronario Agudo/terapia , Redes Neurales de la Computación , Rotura Espontánea , Predisposición Genética a la Enfermedad , Transducción de Señal , Regulación de la Expresión Génica , Análisis de Secuencia por Matrices de Oligonucleótidos , Transcriptoma , Terapia Molecular Dirigida , Marcadores Genéticos , Fenotipo , Enfermedad de la Arteria Coronaria/genética , Enfermedad de la Arteria Coronaria/terapia
19.
BMC Psychiatry ; 24(1): 385, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38773397

RESUMEN

BACKGROUND: Patients with bipolar disorder (BD) show abnormalities in glucolipid metabolism and reproductive hormone levels, which are of concern in women with BD. This study was dedicated to investigating the glucolipid and reproductive hormone levels of female patients, and to preliminarily investigating their relationships with cognition. METHODS: A total of 58 unmedicated female BD patients, 61 stable-medicated female BD patients, and 63 healthy controls (HC) were recruited in this study. Serum glycolipid indexes and reproductive hormones were measured. Cognitive function was assessed using the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS) and the Stroop Color-Word Test (Stroop test). RESULTS: Patients with BD showed significant cognitive impairment (p < 0.05), which was not affected by medication. Triglycerides (TG), luteinizing hormone (LH), and high-density lipoprotein cholesterol (HDL-c) were altered in stable-medicated BD patients. In addition, regression analysis showed that progesterone (PRGE) and prolactin (PRL) were negatively associated with cognitive performance in stable-medicated BD patients. CONCLUSIONS: Female BD patients may have cognitive deficits and abnormal levels of glycolipids and reproductive hormones. And abnormal levels of glycolipids and reproductive hormones may be associated with cognitive dysfunction in female BD patients.


Asunto(s)
Trastorno Bipolar , Disfunción Cognitiva , Glucolípidos , Humanos , Femenino , Trastorno Bipolar/sangre , Trastorno Bipolar/complicaciones , Adulto , Glucolípidos/sangre , Disfunción Cognitiva/sangre , Disfunción Cognitiva/fisiopatología , Hormona Luteinizante/sangre , Prolactina/sangre , Progesterona/sangre , Triglicéridos/sangre , HDL-Colesterol/sangre , Persona de Mediana Edad , Pruebas Neuropsicológicas/estadística & datos numéricos
20.
Ren Fail ; 46(1): 2310081, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38321925

RESUMEN

Background and purpose: Acute kidney injury (AKI) is a common serious complication in sepsis patients with a high mortality rate. This study aimed to develop and validate a predictive model for sepsis associated acute kidney injury (SA-AKI). Methods: In our study, we retrospectively constructed a development cohort comprising 733 septic patients admitted to eight Grade-A tertiary hospitals in Shanghai from January 2021 to October 2022. Additionally, we established an external validation cohort consisting of 336 septic patients admitted to our hospital from January 2017 to December 2019. Risk predictors were selected by LASSO regression, and a corresponding nomogram was constructed. We evaluated the model's discrimination, precision and clinical benefit through receiver operating characteristic (ROC) curves, calibration plots, decision curve analysis (DCA) and clinical impact curves (CIC) in both internal and external validation. Results: AKI incidence was 53.2% in the development cohort and 48.2% in the external validation cohort. The model included five independent indicators: chronic kidney disease stages 1 to 3, blood urea nitrogen, procalcitonin, D-dimer and creatine kinase isoenzyme. The AUC of the model in the development and validation cohorts was 0.914 (95% CI, 0.894-0.934) and 0.923 (95% CI, 0.895-0.952), respectively. The calibration plot, DCA, and CIC demonstrated the model's favorable clinical applicability. Conclusion: We developed and validated a robust nomogram model, which might identify patients at risk of SA-AKI and promising for clinical applications.


Asunto(s)
Lesión Renal Aguda , Sepsis , Humanos , Nomogramas , Estudios Retrospectivos , China
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA