Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Sensors (Basel) ; 19(8)2019 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-31013761

RESUMEN

A 3-PRR (three links with each link consisting of a prismatic pair and two rotating pairs) parallel platform was designed for application in a vacuum environment. To meet the requirement of high tracking accuracy of the 3-PRR parallel platform, a full closed-loop control precision tracking system with laser displacement sensors and linear grating encoders was analysed and implemented. Equally-spaced laser displacement sensors and linear grating encoders were adopted not only for measurement but also for feedback control. A feed-forward control method was applied for comparison before conducting the closed-loop feedback control experiments. The closed-loop control experiments were conducted by adopting the PI (proportion and integration) feedback control and RBF (radial basis function) neural network control algorithms. The experimental results demonstrate that the feed-forward control, PI feedback control, and RBF neural-network control algorithms all have a better control effect than that of semi-closed-loop control, which proves the validity of the designed full closed-loop control system based on the combination of laser displacement sensors and linear grating encoders.

2.
Huan Jing Ke Xue ; 44(7): 3788-3796, 2023 Jul 08.
Artículo en Zh | MEDLINE | ID: mdl-37438278

RESUMEN

To prevent disease spreading during the COVID-19 epidemic, Shenzhen adopted lockdown measures in March of 2022. This provided an opportunity to study the response of changes in anthropogenic volatile organic compounds (AVOCs) in Shenzhen to emission reduction and to evaluate the effectiveness of current emission reduction measures. This study analyzed the variety of AVOCs before, during, and after the epidemic lockdown based on the online observation data of pollutants at Lianhua Station in Shenzhen from March 7, 2022 to March 27, 2022. Additionally, the sensitivity of ozone formation and the assessment of the reduction effect of precursors was conducted by an observation based model(OBM). The results showed that:affected by regional influences and the interference of meteorological conditions, the average value of AVOCs in Shenzhen urban areas did not drop significantly during the lockdown period compared to that before the lockdown. However, the peak of AVOCs at the morning peak time under the influence of "sea and land wind" during the epidemic lockdown period dropped by 46% on average compared with that during the non-lockdown period, and the aromatic hydrocarbon component dropped the most by 59%. Additionally, under the influence of continuous easterly wind, or during the accumulation and increase of AVOCs affected by regional transmission, aromatic components also decreased by an average of 25% and 21%, respectively. During the lockdown period of the epidemic in Shenzhen, the O3 formation in urban areas was still AVOCs-limited. Increasing the emission reduction ratio of AVOCs was the most effective measure to reduce O3 in the short term. In order to ensure the effectiveness of emission reduction, it was recommended that the coordinated emission reduction ratio of AVOCs and NOx should be greater than 1:2. It was only possible to enter the downward channel of O3 if the deep emission reduction was more than 60%. This study revealed that the emission reduction of AVOCs during the morning traffic peak during the epidemic lockdown period was conducive to inhibiting the formation of O3, whereas the control of NOx would promote it. Strengthening the control of local aromatic hydrocarbon components during the regional impact process could also significantly reduce O3 production. At this stage, Shenzhen should strengthen the management and control of industrial solvents, especially to reduce the aromatic hydrocarbon components in the solvent source that have a greater impact on the generation of O3. Further, Shenzhen should continue to promote the reform of the energy structure of motor vehicles to reduce the emission of VOCs in fuel combustion.


Asunto(s)
COVID-19 , Contaminantes Ambientales , Ozono , Compuestos Orgánicos Volátiles , Humanos , COVID-19/epidemiología , COVID-19/prevención & control , Control de Enfermedades Transmisibles , Industrias
3.
J Nanosci Nanotechnol ; 11(2): 1609-12, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21456248

RESUMEN

PPDO was successfully electrospun into continuous, ultrafine fibers by using DMSO as solvent for the first time. The concentration of PPDO in DMSO and the electrospinning temperature were optimized. PPDO/LAP nanocomposites were also electrospun in DMSO. At 70 degrees C, ultrafine PPDO fibers were obtained from 35 wt% solution and the PPDO/LAP nanocomposite fibers were yielded from 55 wt% solution. Electrospun fibers of the PPDO/LAP nanocomposites showed higher degree of crystallinity due to the presence of embedded nanoparticles.

4.
J Phys Chem B ; 114(46): 14827-33, 2010 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-21033693

RESUMEN

Miscibility and crystallization behaviors of poly(ethylene succinate)/poly(p-dioxanone) (PES/PPDO) blends were investigated by differential scanning calorimetry (DSC), polarized optical microscopy (POM), and wide-angle X-ray diffraction (WAXD). PES/PPDO blends are completely miscible as proved by the single grass transition temperature (T(g)) dependence of composition and decreasing crystallization temperature of the blends in comparison with the respective component. POM observation suggests that simultaneous crystallization of PES and PPDO components in the blends took place, spherulites of one component can crystallize inside the spherulites of the other component, and the unique interpenetrated crystalline morphology has been formed for the blends in the full composition range. Isothermal crystallization kinetics of the blends was studied by DSC and the data were analyzed by the Avrami equation. The results suggest that the crystallization mechanisms of the blends were unchanged but the overall crystallization rates were slowed down compared with neat PES and neat PPDO. WAXD results indicate that the crystal structures of PES and PPDO did not change in the blends.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA