Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
J Environ Manage ; 362: 121340, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38824889

RESUMEN

Co-pyrolysis of biomass with phosphogypsum (PG) presents an effective strategy for facilitating the recycling of PG resources. However, it is crucial to note the environmental threats arising from the presence of Pb, Cr, Ni, and F in PG. This study investigated the effect of immobilization and transformation of four elements during co-pyrolysis with biomass and its components. The co-pyrolysis experiments were carried out in a tube furnace with a mixture of PG and corn stover (CS), cellulose (C), lignin (L), glucose (G). Co-pyrolysis occurred at varying temperatures (600 °C, 700 °C, 800 °C, and 900 °C) and different addition ratios (10%, 15%, and 20%). The results indicated that an increase in co-pyrolysis temperature was more conducive to the immobilization and transformation of harmful elements in PG, demonstrating significant efficacy in controlling F. Additionally, the addition of biomass components exerts a significant impact on inhibiting product toxicity, with small molecules such as glucose playing a prominent role in this process. The mechanism underlying the control of harmful elements during co-pyrolysis of PG and biomass was characterized by three main aspects. Firstly, biomass components have the potential to melt-encapsulate the harmful elements in PG, leading to precipitation. Secondly, the pyrolysis gas produced during the co-pyrolysis process contributes to the formation of a rich pore structure in the product. Finally, this process aids in transforming hazardous substances into less harmful forms and stabilizing these elements. The findings of this study are instrumental in optimizing the biomass and PG blend to mitigate the environmental impact of their co-pyrolysis products.


Asunto(s)
Biomasa , Sulfato de Calcio , Cromo , Flúor , Plomo , Níquel , Níquel/química , Cromo/química , Plomo/química , Flúor/química , Sulfato de Calcio/química , Fósforo/química , Zea mays
2.
Environ Res ; 238(Pt 1): 117149, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37716393

RESUMEN

Solid waste (SW) treatment methods mainly include physical, chemical, and biological methods, while physical and chemical methods have advantages such as fast effectiveness and short treatment time, but have high costs and were prone to secondary pollution. Due to the advantages of mild conditions and environmental protection, microbial methods have attracted the attention of numerous researchers. Recently, promotion of biological metabolic activity in biotreatment technology by applying multiple physical conditions, and reducing the biochemical reaction energy base to promote the transfer of protons and electrons, has made significant progress in harmless and resourceful utilization of SW. This paper main summarized the harmless and resourceful treatment methods of common bulk SW. The research of physical field-enhanced microbial treatment of inorganic solid waste (ISW) and organic solid waste (OSW) was discussed. The advantages and mechanisms of microbial treatment compared to traditional SW treatment methods were analyzed. The multi-physical field coupling enhanced microbial treatment technology was proposed to further improving the efficiency of large-scale treatment of bulk SW. The application prospects and potential opportunities of this technology were analyzed. Novel research ideas for the large-scale harmless and resourceful treatment of bulk SW were provided.


Asunto(s)
Conservación de los Recursos Naturales , Residuos Sólidos , Residuos Sólidos/análisis , Contaminación Ambiental
3.
Environ Res ; 236(Pt 2): 116856, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37574102

RESUMEN

Extraction and utilization of effective phosphorus from solid waste have been an important approach for alleviating phosphorus resource shortage. The extraction of available phosphorus by microbial method with low cost, mild conditions and simple process has been drawing attention from the majority of research scholars. However, relevant studies on special microbial communities for effective phosphorus extraction from solid waste are less. In this work,a functional Bacillus_cereus strain screened from phosphate tailings, phosphate ore and forest rhizosphere soil was inoculated into phosphate tailings (PT), modified phosphate tailings (IS) and highland red soil (SS). Compared with SS, the water-holding properties, fertility, leaching toxicity and microbial community diversity of PT and IS with and without bacteria were analyzed. PT+, SS+ and IS+ (after adding bacteria to PT, SS and IS) showed moderately alkaline pH, and the available phosphorus content enhanced by 31.73%, 20.05% and 39.41% respectively. The leaching toxicity phosphate of PT+ and IS + decreased by 4.89 mg/kg and 2.61 mg/kg respectively, while that of SS + increased by 5.45 mg/kg, indicating differences in the phosphorus solubilization mechanism of Bacillus_cereus for different soils. Furthermore, the modification and bacteria treatment improved the relative abundance of Pedobacter, Alcaligenaceae and Pseudomonas, thus enhancing the phosphorus solubility of the PT bacterial community. This work may achieve efficient utilization and ecological restoration of phosphorus tailings-based soil and contribute to long-term sustainable agricultural development.

4.
Ecotoxicol Environ Saf ; 255: 114792, 2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-36948002

RESUMEN

Cadmium has been classified as a kind of human carcinogens, and has a strong mobility in the water environment and this can result in serious harm to human health and environmental safety. Here, a new selective and efficient extraction-recovery strategy for Cd purification is provided by using C6MimT/[C6Mim]PF6 as the green extractant. Due to the high compatibility between C6MimT and [C6Mim]PF6, C6MimT-Cd was efficiently separated from the aqueous phase. When the concentration of Cd(II) was 1000 mg/L, the extraction rate could reached 99.9 %. By comparing [C6MIm]BF4 with [C6MIm]PF6, the hydrophobicity restrained the ion exchange between cation and Cd and significantly reduced the loss of extractant. The extracted Cd(II) was separated in the form of precipitation after stripping. The extraction system of C6MimT/[C6Mim]PF6 was stable after several extraction-stripping cycles. The extraction of Cd(II) by C6MimT/[C6Mim]PF6 system mainly realized by forming a neutral and extractable cadmium complexes between Cd(II) and thione. Based on the natural complexation mechanism between metal and C6MImT, Cd exists as obvious competitive advantage in coordination with C6MimT compare to Pb, Zn, Mg, Cr, Fe. This work overcomes the problems of extractant loss and organic pollution caused by volatile or ion exchange, which can only reduce environmental hazards, but also promote the recovery of cadmium and other valuable resources.


Asunto(s)
Cadmio , Metales , Humanos
5.
J Environ Manage ; 347: 119228, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37806275

RESUMEN

Smelting dust is a toxic waste produced in metal-mineral pyrometallurgical processes. To eliminate or reduce the adverse environmental impacts of smelting dust, valuable components need to be selectively separated from the toxic components present in the waste. This paper reviews the chemical composition, phase composition and particle size distribution characteristics of smelting dust, and the results show that smelting dust has excellent physicochemical characteristics for recovering valuable metals. The process flow, critical factors, development status, advantages and disadvantages of traditional technologies such as pyrometallurgy, hydrometallurgy and biometallurgy were discussed in depth. Conventional treatment methods typically prioritize separating and reclaiming specific elements with high concentrations. However, these methods face challenges such as excessive chemical usage and limited selectivity, which can hinder the sustainable utilization of smelting dust. With the increasing scarcity of resources and strict environmental requirements, a single treatment process can hardly fulfil the demand, and a physical field-enhanced technology for releasing and separating valuable metals is proposed. Through analysing the effect of electric field, microwave and ultrasound on recovering valuable metals from smelting dust, the enhancement mechanism of physical field on the extraction process was clarified. This paper aimed to provide reference for the resource utilization of smelting dust.


Asunto(s)
Polvo , Residuos Electrónicos , Polvo/análisis , Residuos Electrónicos/análisis , Metales , Ambiente , Minerales , Reciclaje/métodos
6.
J Environ Manage ; 325(Pt B): 116469, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36323112

RESUMEN

Copper tailings containing a large amount of heavy metals such as Pb, Cu, As, Mn, and Cr discharged from its mining are a typical bulk solid waste, which is highly hazardous to human and the environment. This research proposed a sustainable and effective method for the environmentally sound utilization of copper tailings solid waste. A high-strength concrete material with copper tailings as the main raw material was successfully prepared, with a 28-day compressive strength of up to 85.35 MPa, the flexural strength reached 12.46 MPa, and the tailings utilization rate of 60%. The mechanical properties and heavy metal stabilization properties of the prepared high-performance concrete were obtained by adding coarse aggregates such as river sand, while changing the sand rate, cementitious material admixture and water-cement ratio. A long-term leaching experiment of the high-strength concrete material with 190 day was carried and proved that the material can be made with low or no risk of heavy metal contamination in copper tailings. Incorporation of copper tailings into the high-performance concrete hydration mainly contains three mechanisms: (i) Pore sealing effect generated by the formation of tailings geopolymer prompted the hardening of the geopolymer layer to form a monolithic package structure; (ii) The active SiO2 material in copper tailings reacts with Ca(OH)2 in the hydration products to produce a strong volcanic ash effect; (iii) the primary hydration of 3CaO·SiO2(C3S) and 3CaO·Al2O3(C3A) in the cement, and the secondary hydration reaction induced by the copper tailings and silica fume. These mechanisms are blended with each other to form a dense microstructure of the slurry, which embodies extremely high mechanical properties on a macroscopic scale, providing a reference role for the bulk utilization of copper tailings.


Asunto(s)
Cobre , Metales Pesados , Humanos , Residuos Sólidos , Dióxido de Silicio/química , Materiales de Construcción , Arena , Metales Pesados/química
7.
J Environ Manage ; 328: 116942, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36495822

RESUMEN

In this study, fluoride (F) was stabilized and soluble components, namely phosphate (P), K, Ca, Cr, Mn, and Pb, were extracted from phosphorus slag (PS) by using aluminum sulfate (AS) synergistic electrokinetic. PHREEQC simulation was used to determine the occurrence form of each ion in the PS. The mechanisms by which various electrokinetic treatment methods affected conductivity and pH distribution were carefully investigated. Electrokinetic treatment increased P concentration of the anode chamber from 22.7 mg/L to 63.39 mg/L, whereas K concentration increased from 15.26 mg/L to 93.44 mg/L. After AS-enhanced electrokinetic treatments, the concentrations of the different components were as follows: P, 131.66 mg/L; K, 198.2 mg/L; and Ca, 331.3 mg/L. The removal rate of soluble P in PS slices increased to 80.88% by 1.5 V/cm of treatment, and it increased to 94.04% after AS enhancement treatment. For water-soluble F, the removal rate from the PS slices in the anode region was 86.03%, decreasing F concentration in the electrode chamber to 9.57 × 10-3 mg/L. Different extraction efficiencies and stability levels of each component in the PS were regulated at various electrode regions by using different processes such as electromigration, electro-osmotic flow, flocculation, and precipitation. Good results can be obtained if fluoride is solidified concurrently with the removal or recovery of P, K, Ca, and other elements using 2%-4% AS enhanced electrokinetic treatment. Furthermore, CaSO4·2H2O whiskers were produced in the electrode regions when AS content was 6%. The findings of this study indicated that the AS synergistic electrokinetic method is suitable for stabilizing F and removing heavy metals from PS, thus providing a promising technology for recycling valuable components such as P, K, Ca, and Sr and for the simultaneous production of CaSO4·2H2O whiskers. This study provides insights for developing novel technologies for the clean treatment and high-value utilization of PS.


Asunto(s)
Fluoruros , Fósforo , Aluminio , Compuestos de Alumbre
8.
J Environ Manage ; 311: 114827, 2022 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-35248928

RESUMEN

Phosphogypsum is one of the typical by-products of phosphorus chemical industry. As a strategic industry related to the national livelihood of China, phosphorus chemical industry has accumulated and produced a significant amount of phosphogypsum. In general, phosphogypsum contains approximately 80%-95% calcium sulfate dihydrate, and less than 5% toxic and harmful elements. In this paper, toxic and hazardous components in phosphogypsum were efficiently solidified and stabilized by highly targeted solidification and stabilization technology. Calcium carbide slag or lime was used as an alkali-base neutralizer of phosphogypsum, and polymeric ferric sulfate or polymeric aluminum chloride as a directional solidification stabilizer to analyze the leaching toxicity of the mixed powder in 1, 3, 5 and 15 days. The experimental results demonstrate excellent solidification and stabilization effect with the leaching pH of 6-9, the leaching concentration of P, F and heavy metals of less than 0.5 mg/L, 10 mg/L and 0.1 mg/L, respectively, which meets the requirements of relevant international standards. Mechanistic analysis indicates that the solidification and stabilization of toxic and hazardous substances in phosphogypsum is perfectly achieved owing to the generation, adsorption and encapsulation of insoluble substances. This technology can reduce the costs and difficulty in the phosphogypsum treatment, and has extensive application potentials.

9.
J Environ Manage ; 313: 114957, 2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35390656

RESUMEN

Phosphogypsum is one of the hottest issues in the field of environmental solid waste treatment, with complex and changeable composition. Meanwhile, phosphogypsum contains a large number of impurities, thus leading to the low resource utilization rate, and it can only be stockpiled in large quantities. Phosphogypsum occupies a lot of land and poses a serious pollution threat to the ecological environment. This paper mainly summarizes the existing pretreatment and resource utilization technology of phosphogypsum. The pretreatment mainly includes dry method and wet method. The resource utilization technology mainly includes building materials, chemical raw materials, agriculture, environmental functional materials, filling materials, carbon sequestration and rare and precious extraction. Although there are many aspects of resource utilization of phosphogypsum, the existing technology is far from being able to consume a large amount of accumulated and generated phosphogypsum. Through the analysis, the comparison and mechanism analysis of the existing multifaceted and multi-level resource treatment technologies of phosphogypsum, the four promising resource utilization directions of phosphogypsum are put forward, mainly including prefabricated building materials, eco-friendly materials and soil materials, and new green functional materials and chemical fillers. Moreover, this paper summarizes the research basis of multi field and all-round treatment and disposal of phosphogypsum, which reduces repeated researches and development, as well as the treatment cost of phosphogypsum. This paper could provide a feasible research direction for the resource treatment technology of phosphogypsum in the future, so as to improve the consumption of phosphogypsum and reduce environmental risks.


Asunto(s)
Residuos Industriales , Residuos Sólidos , Sulfato de Calcio/química , Fósforo/química
10.
Molecules ; 27(2)2022 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-35056777

RESUMEN

Phosphogypsum (PG) treatment is one of the research hotspots in the field of environmental protection. Many researchers both at home and abroad have devoted themselves to studies on harmless resource treatment of PG, but the treatment technology is unable to meet the demand of PG consumption due to the huge production and storage demands. In order to solve the problem of PG pollution, this study explored the different solidified effects of various modification formulations on the hazardous components in PG, using industrial solid waste calcium carbide slag (CCS) as an alkaline regulator; Portland cement (PC), polyaluminum chloride (PAC) and CaCl2 as the main raw materials of the solidification and stabilization formula and the water content in PG as the reaction medium. The results showed that CCS (0.5%), PC (0.4%) and PAC (0.3%) had a more significant solidified effect on phosphorus (P) and fluoride (F). PAC was added in two steps and reacted under normal temperature and pressure, and its leaching toxicity meets the requirements of relevant standards, which laid an excellent foundation for PG-based ecological restoration materials and filling materials, with low economic cost, simple process and strong feasibility. This will provide great convenience for the later mining and metallurgy.

11.
Ecotoxicol Environ Saf ; 225: 112784, 2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34537588

RESUMEN

In this study, Co, Cu, Pd, and Pd/Cu composite metal ions were used to synthesize metal nanoparticles with high efficiency in purifying hydrogen cyanide gas. The pure liquid phase catalytic purification of hydrogen cyanide gas was studied. According to the removal rate, the Pd/Cu composite metal ions had the best purification efficiency among the nanoparticles of different metal types. The removal rate order was Pd/Cu>Pd>Cu>Co. The gas after reaction were analyzed by gas chromatography, and it was found that HCN was converted into CO2, N2 and NH3 by nanoparticles. Then, Pd/Cu composite metal ions with the highest purification efficiency were used to study the electrochemical synergistic liquid-phase catalytic purification of HCN gas. The effects of electrochemical conditions and current on the electro-hydraulic synergistic purification were studied. The removal efficiency of HCN by electrochemical synergistic liquid phase catalysis was better than that by pure liquid phase catalysis. The different nanoparticles before and after HCN absorption were characterized and analyzed to explore the purification process of HCN. The purification mechanism of hydrogen cyanide by Pd-Cu catalyst under applied voltage was studied under certain conditions. During the catalytic reaction, the nano-catalyst was partially dissolved in liquid phase and partially HCN reacts with metal ions on the free or nanoparticles to form complex [Mc(CN)n]2-n. Homogeneous and quasi-homogeneous reactions in liquid phase interweave together to form a more complex reaction system.


Asunto(s)
Cianuro de Hidrógeno , Nanopartículas del Metal , Catálisis , Cromatografía de Gases , Levonorgestrel
12.
J Environ Sci (China) ; 66: 165-172, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29628083

RESUMEN

A newly designed electric assisted micro-electrolysis filter (E-ME) was developed to investigate its degradation efficiency for coking wastewater and correlated characteristics. The performance of the E-ME system was compared with separate electrolysis (SE) and micro-electrolysis (ME) systems. The results showed a prominent synergistic effect on COD removal in E-ME systems. Gas chromatography/mass spectrometry (GC-MS) analysis confirmed that the applied electric field enhanced the degradation of phenolic compounds. Meanwhile, more biodegradable oxygen-bearing compounds were detected. SEM images of granular activated carbon (GAC) showed that inactivation and blocking were inhibited during the E-ME process. The effects of applied voltage and initial pH in E-ME systems were also studied. The best voltage value was 1V, but synergistic effects existed even with lower applied voltage. E-ME systems exhibited some pH buffering capacity and attained the best efficiency in neutral media, which means that there is no need to adjust pH prior to or during the treatment process. Therefore, E-ME systems were confirmed as a promising technology for treatment of coking wastewater and other refractory wastewater.


Asunto(s)
Coque/análisis , Electrólisis , Filtración/instrumentación , Eliminación de Residuos Líquidos/métodos , Aguas Residuales/química , Contaminantes Químicos del Agua/química , Filtración/métodos , Contaminantes Químicos del Agua/análisis
13.
Environ Sci Pollut Res Int ; 31(11): 16401-16412, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38311685

RESUMEN

Graphene (GR) is a new type of carbon-based material that combines many excellent properties. In order to give full play to the excellent properties of graphene and expand its application scope, this study used ionic liquid SbF6 to modify it and successfully prepared ionic liquid modified graphene composites (H/GR), and studied its adsorption mechanism of arsenic in aqueous solution. By investigating the effects of reaction temperature, reaction time, pH, adsorbent (H/GR) dosage, and humic acid concentration on the removal rate of arsenic in aqueous solution, the experimental results showed that when the reaction temperature was 30 °C, reaction time was 1 h, pH was 6, H/GR dosage was 0.1g·L-1, and humic acid (HA) concentration was 10 mg·L-1, the best arsenic removal effect was achieved with a maximum. The removal rate was 99.4%. The equilibrium adsorption capacity was well modeled by the Langmuir, Freundlich, and Tenkin models at 30 °C. The Langmuir adsorption isotherm was the most consistent, with a calculated maximum value of 137.95 mg·g-1, which is higher than most adsorbents in the field. In addition, it was determined that the graphene surface was indeed immobilized with the ionic liquid [Hmim]SbF6 by SEM mapping and EDS energy spectroscopy observation, and the adsorption isotherms and pore size distribution maps of graphene before and after the loading of the ionic liquid were analyzed by BET, which further confirmed a significant increase in the microporosity and porosity of the modified H/GR, and furthermore, it was demonstrated that the arsenic ions are chemically bonded with and indeed adsorbed on the surface of the H/GR by FT-IR and XPS characterization analyses. The results of all experimental data studies indicate that the main mechanism of As(V) removal from water by H/GR is due to electrostatic adsorption, ion exchange, and complexation between the modified graphene itself and the ionic liquid [Hmim]SbF6 itself.


Asunto(s)
Arsénico , Grafito , Líquidos Iónicos , Contaminantes Químicos del Agua , Arsénico/análisis , Grafito/química , Líquidos Iónicos/análisis , Adsorción , Espectroscopía Infrarroja por Transformada de Fourier , Sustancias Húmicas/análisis , Agua , Contaminantes Químicos del Agua/análisis , Concentración de Iones de Hidrógeno , Cinética
14.
Environ Sci Pollut Res Int ; 31(16): 23334-23362, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38436845

RESUMEN

Mono and polycyclic aromatic hydrocarbons are widely distributed and severely pollute the aqueous environment due to natural and human activities, particularly human activity. It is crucial to identify and address them in order to reduce the dangers and threats they pose to biological processes and ecosystems. In the fields of sensor detection and water treatment, electrochemistry plays a crucial role as a trustworthy and environmentally friendly technology. In order to accomplish trace detection while enhancing detection accuracy and precision, researchers have created and studied sensors using a range of materials based on electrochemical processes, and their results have demonstrated good performance. One cannot overlook the challenges associated with treating aromatic pollutants, including mono and polycyclic. Much work has been done and good progress has been achieved in order to address these challenges. This study discusses the mono and polycyclic aromatic hydrocarbon sensor detection and electrochemical treatment technologies for contaminants in the aqueous environment. Additionally mentioned are the sources, distribution, risks, hazards, and problems in the removal of pollutants. The obstacles to be overcome and the future development plans of the field are then suggested by summarizing and assessing the research findings of the researchers.


Asunto(s)
Contaminantes Ambientales , Hidrocarburos Policíclicos Aromáticos , Purificación del Agua , Humanos , Hidrocarburos Policíclicos Aromáticos/análisis , Contaminantes Ambientales/análisis , Ecosistema , Predicción
15.
Talanta ; 273: 125853, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38460422

RESUMEN

Semiconductor metal oxides (SMOs) nanomaterials are a category of sensing materials that are widely applied to chemiresistive NOx gas sensors. However, there is much space to improve the sensing performance of SMOs nanomaterials. Therefore, how to improve the sensing performance of SMOs nanomaterials for NOx gases has always attracted the interest of researchers. Up to now, there are few reviews focus on the modification strategies of SMOs which applied to NOx gas sensors. In order to compensate for the limitation, this review summarizes the existing modification strategies of SMOs, hoping to provide researchers a view of the research progress in this filed as comprehensive as possible. This review focuses on the progress of the modification of SMOs nanomaterials for chemiresistive NOx (NO, NO2) gas sensors, including the morphology modulation of SMOs, compositing SMOs, loading noble metals, doping metal ions, compositing with carbon nanomaterials, compositing with biomass template, and compositing with MXene, MOFs, conducting polymers. The mechanism of each strategy to enhance the NOx sensing performance of SMOs-based nanomaterials is also discussed and summarized. In addition, the limitations of some of the modification strategies and ways to address them are discussed. Finally, future perspectives for SMOs-based NOx gas sensors are also discussed.

16.
Chem Asian J ; 19(1): e202300863, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-37937970

RESUMEN

We prepared an environmentally friendly intelligent Fe3 O4 @PMMA@PDMS superhydrophobic oil-absorbing material with simple process and excellent performance, and investigated the effects of different particle sizes of Fe3 O4 , different concentrations of PDMS, and different heating times on the superhydrophobicity of the coating. The best performance of the coating was achieved at a particle size combination of 20/500 nm for Fe3 O4 , a PDMS to Fe3 O4 @PMMA mass ratio of 6 : 1, and a heating time of 2 min at 400 °C. H2-SPSS coating not only has excellent superhydrophobicity, abrasion resistance, self-cleaning property, and chemical corrosion, but also has good flux and efficiency for separating oil-water mixture, with fluxes of 40,540, 32,432, and 37,027 Lm-2 h-1 for trichloromethane, dichloromethane and bromoethane, respectively, and separation efficiencies of 99.78 %, 99.74 % and 99.73 %, respectively. In addition, we also prepared a superhydrophobic magnetic polyurethane (SPPU) sponge using Fe3 O4 @PMMA@PDMS, which not only has a good oil absorption capacity of 18-44 g/g for different oil substances, it can also move directionally by magnet attraction and absorb oil along a fixed path. Under the control of the magnet, SPPU completes the whole oil absorption process in only 4 s, showing excellent oil absorption and intelligence.

17.
Chem Asian J ; 18(17): e202300498, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37401141

RESUMEN

In recent years, single-atom catalysts (SACs) have received increasing attention in the field of electrochemical CO2 RR with their efficient atom utilization efficiency and excellent catalytic performance. However, their low metal loading and the presence of linear relationships for single active sites with simple structures possibly restrict their activity and practical applications. Active site tailoring at the atomic level is a visionary approach to break the existing limitations of SACs. This paper first briefly introduces the synthesis strategies of SACs and DACs. Then, combining previous experimental and theoretical studies, this paper introduces four optimization strategies, namely spin-state tuning engineering, axial functionalization engineering, ligand engineering, and substrate tuning engineering, for improving the catalytic performance of SACs in the electrochemical CO2 RR process by combining previous experimental and theoretical studies. Then it is introduced that DACs exhibit significant advantages over SACs in increasing metal atom loading, promoting the adsorption and activation of CO2 molecules, modulating intermediate adsorption, and promoting C-C coupling. At the end of this paper, we briefly and succinctly summarize the main challenges and application prospects of SACs and DACs in the field of electrochemical CO2 RR at present.

18.
Chem Asian J ; 18(12): e202300291, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37106554

RESUMEN

Excess CO2 can be effectively converted into valuable fuels and chemicals by electrochemical CO2 reduction, which can help establish a low-carbon emission economy and solve the current energy crisis. In recent years, metal-organic frameworks (MOFs), as an emerging multifunctional material with porous structure, high chemical tunability and large specific surface area, has received increasing attention in the field of electrochemical CO2 RR. In this paper, we present a comprehensive overview of various MOFs and their derivatives as CO2 RR electrocatalysts and analyze their roles in the catalytic process from physical and chemical aspects. In addition, combining experiments and theory, this article also offers a personal view on the electronic structure modulation strategies to improve electrocatalytic performance. The article concludes with an analysis of the challenges in realizing MOFs and their derivatives for electrocatalytic CO2 RR applications.


Asunto(s)
Dióxido de Carbono , Estructuras Metalorgánicas , Catálisis , Porosidad
19.
Nanoscale ; 15(8): 3666-3692, 2023 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-36734996

RESUMEN

The electrochemical CO2 reduction reaction can effectively convert CO2 into promising fuels and chemicals, which is helpful in establishing a low-carbon emission economy. Compared with other types of electrocatalysts, single-atom catalysts (SACs) immobilized on carbon substrates are considered to be promising candidate catalysts. Atomically dispersed SACs exhibit excellent catalytic performance in CO2RR due to their maximum atomic utilization, unique electronic structure, and coordination environment. In this paper, we first briefly introduce the synthetic strategies and characterization techniques of SACs. Then, we focus on the optimization strategies of the atomic structure of carbon-based SACs, including adjusting the coordination atoms and coordination numbers, constructing the axial chemical environment, and regulating the carbon substrate, focusing on exploring the structure-performance relationship of SACs in the CO2RR process. In addition, this paper also briefly introduces the diatomic catalysts (DACs) as an extension of SACs. At the end of the paper, we summarize the article with an exciting outlook discussing the current challenges and prospects for research on the application of SACs in CO2RR.

20.
Environ Sci Pollut Res Int ; 30(17): 51271-51287, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36809614

RESUMEN

Hexavalent chromium Cr(VI) is one of the most hazardous oxygen-containing anions to human health and the environment. Adsorption is considered to be an effective method for the removal of Cr(VI) from aqueous solutions. Based on an environmental perspective, we used renewable biomass cellulose as carbon source and chitosan as functional material to synthesize chitosan-coated magnetic carbon (MC@CS) material. The synthesized chitosan magnetic carbons were uniform in diameter (~ 20 nm) and contain a large number of abundant hydroxyl and amino functional groups on the surface, meanwhile owning excellent magnetic separation properties. The MC@CS exhibited high adsorption capacity (83.40 mg/g) at pH 3 and excellent cycling regeneration ability when applied to Cr(VI) removal in water, removal rate of Cr(VI) (10 mg/L) was still over 70% after 10 cycles. FT-IR and XPS spectra showed that electrostatic interaction and reduction with Cr(VI) are the main mechanisms of Cr(VI) removal by MC@CS nanomaterial. This work provides an environment-friendly adsorption material that could be reused for the removal of Cr(VI) in multiple cycles.


Asunto(s)
Quitosano , Nanoestructuras , Contaminantes Químicos del Agua , Humanos , Carbono , Quitosano/química , Aguas Residuales , Espectroscopía Infrarroja por Transformada de Fourier , Iones , Cromo/química , Adsorción , Agua , Fenómenos Magnéticos , Contaminantes Químicos del Agua/análisis , Cinética , Concentración de Iones de Hidrógeno
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA