Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 162(4): 738-50, 2015 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-26276630

RESUMEN

The 2013-2015 West African epidemic of Ebola virus disease (EVD) reminds us of how little is known about biosafety level 4 viruses. Like Ebola virus, Lassa virus (LASV) can cause hemorrhagic fever with high case fatality rates. We generated a genomic catalog of almost 200 LASV sequences from clinical and rodent reservoir samples. We show that whereas the 2013-2015 EVD epidemic is fueled by human-to-human transmissions, LASV infections mainly result from reservoir-to-human infections. We elucidated the spread of LASV across West Africa and show that this migration was accompanied by changes in LASV genome abundance, fatality rates, codon adaptation, and translational efficiency. By investigating intrahost evolution, we found that mutations accumulate in epitopes of viral surface proteins, suggesting selection for immune escape. This catalog will serve as a foundation for the development of vaccines and diagnostics. VIDEO ABSTRACT.


Asunto(s)
Genoma Viral , Fiebre de Lassa/virología , Virus Lassa/genética , ARN Viral/genética , África Occidental/epidemiología , Animales , Evolución Biológica , Reservorios de Enfermedades , Ebolavirus/genética , Variación Genética , Glicoproteínas/genética , Fiebre Hemorrágica Ebola/virología , Humanos , Fiebre de Lassa/epidemiología , Fiebre de Lassa/transmisión , Virus Lassa/clasificación , Virus Lassa/fisiología , Murinae/genética , Mutación , Nigeria/epidemiología , Proteínas Virales/genética , Zoonosis/epidemiología , Zoonosis/virología
2.
Cell ; 161(7): 1516-26, 2015 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-26091036

RESUMEN

The 2013-2015 Ebola virus disease (EVD) epidemic is caused by the Makona variant of Ebola virus (EBOV). Early in the epidemic, genome sequencing provided insights into virus evolution and transmission and offered important information for outbreak response. Here, we analyze sequences from 232 patients sampled over 7 months in Sierra Leone, along with 86 previously released genomes from earlier in the epidemic. We confirm sustained human-to-human transmission within Sierra Leone and find no evidence for import or export of EBOV across national borders after its initial introduction. Using high-depth replicate sequencing, we observe both host-to-host transmission and recurrent emergence of intrahost genetic variants. We trace the increasing impact of purifying selection in suppressing the accumulation of nonsynonymous mutations over time. Finally, we note changes in the mucin-like domain of EBOV glycoprotein that merit further investigation. These findings clarify the movement of EBOV within the region and describe viral evolution during prolonged human-to-human transmission.


Asunto(s)
Ebolavirus/genética , Ebolavirus/aislamiento & purificación , Genoma Viral , Fiebre Hemorrágica Ebola/epidemiología , Fiebre Hemorrágica Ebola/virología , Mutación , Evolución Biológica , Brotes de Enfermedades , Ebolavirus/clasificación , Fiebre Hemorrágica Ebola/transmisión , Humanos , Sierra Leona/epidemiología , Manejo de Especímenes
3.
PLoS Biol ; 18(2): e3000611, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32045407

RESUMEN

Unusually large outbreaks of mumps across the United States in 2016 and 2017 raised questions about the extent of mumps circulation and the relationship between these and prior outbreaks. We paired epidemiological data from public health investigations with analysis of mumps virus whole genome sequences from 201 infected individuals, focusing on Massachusetts university communities. Our analysis suggests continuous, undetected circulation of mumps locally and nationally, including multiple independent introductions into Massachusetts and into individual communities. Despite the presence of these multiple mumps virus lineages, the genomic data show that one lineage has dominated in the US since at least 2006. Widespread transmission was surprising given high vaccination rates, but we found no genetic evidence that variants arising during this outbreak contributed to vaccine escape. Viral genomic data allowed us to reconstruct mumps transmission links not evident from epidemiological data or standard single-gene surveillance efforts and also revealed connections between apparently unrelated mumps outbreaks.


Asunto(s)
Brotes de Enfermedades , Genoma Viral/genética , Virus de la Parotiditis/genética , Paperas/epidemiología , Paperas/transmisión , Genotipo , Humanos , Epidemiología Molecular , Paperas/virología , Virus de la Parotiditis/clasificación , Mutación , Filogenia , Análisis de Secuencia de ADN , Estados Unidos/epidemiología , Vacunación/estadística & datos numéricos , Proteínas Virales/genética
4.
Nature ; 546(7658): 401-405, 2017 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-28538723

RESUMEN

Zika virus (ZIKV) is causing an unprecedented epidemic linked to severe congenital abnormalities. In July 2016, mosquito-borne ZIKV transmission was reported in the continental United States; since then, hundreds of locally acquired infections have been reported in Florida. To gain insights into the timing, source, and likely route(s) of ZIKV introduction, we tracked the virus from its first detection in Florida by sequencing ZIKV genomes from infected patients and Aedes aegypti mosquitoes. We show that at least 4 introductions, but potentially as many as 40, contributed to the outbreak in Florida and that local transmission is likely to have started in the spring of 2016-several months before its initial detection. By analysing surveillance and genetic data, we show that ZIKV moved among transmission zones in Miami. Our analyses show that most introductions were linked to the Caribbean, a finding corroborated by the high incidence rates and traffic volumes from the region into the Miami area. Our study provides an understanding of how ZIKV initiates transmission in new regions.


Asunto(s)
Infección por el Virus Zika/epidemiología , Infección por el Virus Zika/virología , Virus Zika/genética , Aedes/virología , Animales , Región del Caribe/epidemiología , Brotes de Enfermedades/estadística & datos numéricos , Femenino , Florida/epidemiología , Genoma Viral/genética , Humanos , Incidencia , Epidemiología Molecular , Mosquitos Vectores/virología , Virus Zika/aislamiento & purificación , Infección por el Virus Zika/transmisión
5.
Nature ; 546(7658): 411-415, 2017 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-28538734

RESUMEN

Although the recent Zika virus (ZIKV) epidemic in the Americas and its link to birth defects have attracted a great deal of attention, much remains unknown about ZIKV disease epidemiology and ZIKV evolution, in part owing to a lack of genomic data. Here we address this gap in knowledge by using multiple sequencing approaches to generate 110 ZIKV genomes from clinical and mosquito samples from 10 countries and territories, greatly expanding the observed viral genetic diversity from this outbreak. We analysed the timing and patterns of introductions into distinct geographic regions; our phylogenetic evidence suggests rapid expansion of the outbreak in Brazil and multiple introductions of outbreak strains into Puerto Rico, Honduras, Colombia, other Caribbean islands, and the continental United States. We find that ZIKV circulated undetected in multiple regions for many months before the first locally transmitted cases were confirmed, highlighting the importance of surveillance of viral infections. We identify mutations with possible functional implications for ZIKV biology and pathogenesis, as well as those that might be relevant to the effectiveness of diagnostic tests.


Asunto(s)
Filogenia , Infección por el Virus Zika/transmisión , Infección por el Virus Zika/virología , Virus Zika/genética , Virus Zika/aislamiento & purificación , Animales , Brasil/epidemiología , Colombia/epidemiología , Culicidae/virología , Brotes de Enfermedades/estadística & datos numéricos , Genoma Viral/genética , Mapeo Geográfico , Honduras/epidemiología , Humanos , Metagenoma/genética , Epidemiología Molecular , Mosquitos Vectores/virología , Mutación , Vigilancia en Salud Pública , Puerto Rico/epidemiología , Estados Unidos/epidemiología , Virus Zika/clasificación , Virus Zika/patogenicidad , Infección por el Virus Zika/diagnóstico , Infección por el Virus Zika/epidemiología
6.
Nature ; 544(7650): 309-315, 2017 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-28405027

RESUMEN

The 2013-2016 West African epidemic caused by the Ebola virus was of unprecedented magnitude, duration and impact. Here we reconstruct the dispersal, proliferation and decline of Ebola virus throughout the region by analysing 1,610 Ebola virus genomes, which represent over 5% of the known cases. We test the association of geography, climate and demography with viral movement among administrative regions, inferring a classic 'gravity' model, with intense dispersal between larger and closer populations. Despite attenuation of international dispersal after border closures, cross-border transmission had already sown the seeds for an international epidemic, rendering these measures ineffective at curbing the epidemic. We address why the epidemic did not spread into neighbouring countries, showing that these countries were susceptible to substantial outbreaks but at lower risk of introductions. Finally, we reveal that this large epidemic was a heterogeneous and spatially dissociated collection of transmission clusters of varying size, duration and connectivity. These insights will help to inform interventions in future epidemics.


Asunto(s)
Ebolavirus/genética , Ebolavirus/fisiología , Genoma Viral/genética , Fiebre Hemorrágica Ebola/transmisión , Fiebre Hemorrágica Ebola/virología , Clima , Brotes de Enfermedades/estadística & datos numéricos , Ebolavirus/aislamiento & purificación , Geografía , Fiebre Hemorrágica Ebola/epidemiología , Humanos , Internacionalidad , Modelos Lineales , Epidemiología Molecular , Filogenia , Viaje/legislación & jurisprudencia , Viaje/estadística & datos numéricos
7.
N Engl J Med ; 379(18): 1745-1753, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30332564

RESUMEN

During 2018, an unusual increase in Lassa fever cases occurred in Nigeria, raising concern among national and international public health agencies. We analyzed 220 Lassa virus genomes from infected patients, including 129 from the 2017-2018 transmission season, to understand the viral populations underpinning the increase. A total of 14 initial genomes from 2018 samples were generated at Redeemer's University in Nigeria, and the findings were shared with the Nigerian Center for Disease Control in real time. We found that the increase in cases was not attributable to a particular Lassa virus strain or sustained by human-to-human transmission. Instead, the data were consistent with ongoing cross-species transmission from local rodent populations. Phylogenetic analysis also revealed extensive viral diversity that was structured according to geography, with major rivers appearing to act as barriers to migration of the rodent reservoir.


Asunto(s)
Genoma Viral , Fiebre de Lassa/virología , Virus Lassa/genética , ARN Viral/análisis , Adolescente , Adulto , Animales , Teorema de Bayes , Reservorios de Enfermedades , Femenino , Variación Genética , Humanos , Fiebre de Lassa/epidemiología , Fiebre de Lassa/transmisión , Masculino , Cadenas de Markov , Persona de Mediana Edad , Nigeria/epidemiología , Filogenia , Filogeografía , Roedores , Análisis de Secuencia de ARN , Zoonosis/transmisión
8.
Clin Infect Dis ; 65(8): 1400-1403, 2017 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-28582513

RESUMEN

In one patient over time, we found that concentration of Ebola virus RNA in semen during recovery is remarkably higher than blood at peak illness. Virus in semen is replication-competent with no change in viral genome over time. Presence of sense RNA suggests replication in cells present in semen.


Asunto(s)
Ebolavirus/genética , Fiebre Hemorrágica Ebola/virología , Semen/virología , Adulto , Ebolavirus/clasificación , Genoma Viral/genética , Humanos , Masculino , ARN Viral/análisis , ARN Viral/genética , Carga Viral
9.
J Virol ; 90(2): 862-72, 2016 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-26512086

RESUMEN

UNLABELLED: The introduction of West Nile virus (WNV) into North America in 1999 is a classic example of viral emergence in a new environment, with its subsequent dispersion across the continent having a major impact on local bird populations. Despite the importance of this epizootic, the pattern, dynamics, and determinants of WNV spread in its natural hosts remain uncertain. In particular, it is unclear whether the virus encountered major barriers to transmission, or spread in an unconstrained manner, and if specific viral lineages were favored over others indicative of intrinsic differences in fitness. To address these key questions in WNV evolution and ecology, we sequenced the complete genomes of approximately 300 avian isolates sampled across the United States between 2001 and 2012. Phylogenetic analysis revealed a relatively star-like tree structure, indicative of explosive viral spread in the United States, although with some replacement of viral genotypes through time. These data are striking in that viral sequences exhibit relatively limited clustering according to geographic region, particularly for those viruses sampled from birds, and no strong phylogenetic association with well-sampled avian species. The genome sequence data analyzed here also contain relatively little evidence for adaptive evolution, particularly of structural proteins, suggesting that most viral lineages are of similar fitness and that WNV is well adapted to the ecology of mosquito vectors and diverse avian hosts in the United States. In sum, the molecular evolution of WNV in North America depicts a largely unfettered expansion within a permissive host and geographic population with little evidence of major adaptive barriers. IMPORTANCE: How viruses spread in new host and geographic environments is central to understanding the emergence and evolution of novel infectious diseases and for predicting their likely impact. The emergence of the vector-borne West Nile virus (WNV) in North America in 1999 represents a classic example of this process. Using approximately 300 new viral genomes sampled from wild birds, we show that WNV experienced an explosive spread with little geographical or host constraints within birds and relatively low levels of adaptive evolution. From its introduction into the state of New York, WNV spread across the United States, reaching California and Florida within 4 years, a migration that is clearly reflected in our genomic sequence data, and with a general absence of distinct geographical clusters of bird viruses. However, some geographically distinct viral lineages were found to circulate in mosquitoes, likely reflecting their limited long-distance movement compared to avian species.


Asunto(s)
Enfermedades de las Aves/epidemiología , Enfermedades de las Aves/transmisión , Transmisión de Enfermedad Infecciosa , Filogeografía , Fiebre del Nilo Occidental/veterinaria , Animales , Enfermedades de las Aves/virología , Análisis por Conglomerados , Evolución Molecular , Variación Genética , Genoma Viral , Genotipo , Epidemiología Molecular , Datos de Secuencia Molecular , Análisis de Secuencia de ADN , Homología de Secuencia , Estados Unidos/epidemiología , Fiebre del Nilo Occidental/epidemiología , Fiebre del Nilo Occidental/transmisión , Virus del Nilo Occidental/clasificación , Virus del Nilo Occidental/genética , Virus del Nilo Occidental/aislamiento & purificación
10.
J Virol ; 88(13): 7286-93, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24741088

RESUMEN

UNLABELLED: Human respiratory syncytial virus (RSV) is the leading cause of lower respiratory tract disease in infants and young children and an important respiratory pathogen in the elderly and immunocompromised. While population-wide molecular epidemiology studies have shown multiple cocirculating RSV genotypes and revealed antigenic and genetic change over successive seasons, little is known about the extent of viral diversity over the course of an individual infection, the origins of novel variants, or the effect of immune pressure on viral diversity and potential immune-escape mutations. To investigate viral population diversity in the presence and absence of selective immune pressures, we studied whole-genome deep sequencing of RSV in upper airway samples from an infant with severe combined immune deficiency syndrome and persistent RSV infection. The infection continued over several months before and after bone marrow transplant (BMT) from his RSV-immune father. RSV diversity was characterized in 26 samples obtained over 78 days. Diversity increased after engraftment, as defined by T-cell presence, and populations reflected variation mostly within the G protein, the major surface antigen. Minority populations with known palivizumab resistance mutations emerged after its administration. The viral population appeared to diversify in response to selective pressures, showing a statistically significant growth in diversity in the presence of pressure from immunity. Defining escape mutations and their dynamics will be useful in the design and application of novel therapeutics and vaccines. These data can contribute to future studies of the relationship between within-host and population-wide RSV phylodynamics. IMPORTANCE: Human RSV is an important cause of respiratory disease in infants, the elderly, and the immunocompromised. RSV circulating in a community appears to change season by season, but the amount of diversity generated during an individual infection and the impact of immunity on this viral diversity has been unclear. To address this question, we described within-host RSV diversity by whole-genome deep sequencing in a unique clinical case of an RSV-infected infant with severe combined immunodeficiency and effectively no adaptive immunity who then gained adaptive immunity after undergoing bone marrow transplantation. We found that viral diversity increased in the presence of adaptive immunity and was primarily within the G protein, the major surface antigen. These data will be useful in designing RSV treatments and vaccines and to help understand the relationship between the dynamics of viral diversification within individual hosts and the viral populations circulating in a community.


Asunto(s)
Inmunidad Adaptativa/genética , Variación Genética/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Huésped Inmunocomprometido/genética , Infecciones por Virus Sincitial Respiratorio/genética , Virus Sincitial Respiratorio Humano/genética , Proteínas Virales/genética , Secuencia de Aminoácidos , Genoma Viral , Genómica , Humanos , Datos de Secuencia Molecular , Estudios Prospectivos , Infecciones por Virus Sincitial Respiratorio/inmunología , Infecciones por Virus Sincitial Respiratorio/virología , Virus Sincitial Respiratorio Humano/aislamiento & purificación , Homología de Secuencia de Aminoácido
11.
Nucleic Acids Res ; 41(1): e13, 2013 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-22962364

RESUMEN

RNA viruses are the causative agents for AIDS, influenza, SARS, and other serious health threats. Development of rapid and broadly applicable methods for complete viral genome sequencing is highly desirable to fully understand all aspects of these infectious agents as well as for surveillance of viral pandemic threats and emerging pathogens. However, traditional viral detection methods rely on prior sequence or antigen knowledge. In this study, we describe sequence-independent amplification for samples containing ultra-low amounts of viral RNA coupled with Illumina sequencing and de novo assembly optimized for viral genomes. With 5 million reads, we capture 96 to 100% of the viral protein coding region of HIV, respiratory syncytial and West Nile viral samples from as little as 100 copies of viral RNA. The methods presented here are scalable to large numbers of samples and capable of generating full or near full length viral genomes from clone and clinical samples with low amounts of viral RNA, without prior sequence information and in the presence of substantial host contamination.


Asunto(s)
Genoma Viral , Técnicas de Amplificación de Ácido Nucleico , ARN Viral/química , Análisis de Secuencia de ARN , Secuencia de Bases , VIH/genética , Humanos , Datos de Secuencia Molecular , Virus Sincitiales Respiratorios/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Virus del Nilo Occidental/genética
12.
bioRxiv ; 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38463963

RESUMEN

Low-abundance members of microbial communities are difficult to study in their native habitats. This includes Escherichia coli, a minor, but common inhabitant of the gastrointestinal tract and opportunistic pathogen, including of the urinary tract, where it is the primary pathogen. While multi-omic analyses have detailed critical interactions between uropathogenic Escherichia coli (UPEC) and the bladder that mediate UTI outcome, comparatively little is known about UPEC in its pre-infection reservoir, partly due to its low abundance there (<1% relative abundance). To accurately and sensitively explore the genomes and transcriptomes of diverse E. coli in gastrointestinal communities, we developed E. coli PanSelect which uses a set of probes designed to specifically recognize and capture E. coli's broad pangenome from sequencing libraries. We demonstrated the ability of E. coli PanSelect to enrich, by orders of magnitude, sequencing data from diverse E. coli using a mock community and a set of human stool samples collected as part of a cohort study investigating drivers of recurrent urinary tract infections (rUTI). Comparisons of genomes and transcriptomes between E. coli residing in the gastrointestinal tracts of women with and without a history of rUTI suggest that rUTI gut E. coli are responding to increased levels of oxygen and nitrate, suggestive of mucosal inflammation, which may have implications for recurrent disease. E. coli PanSelect is well suited for investigations of native in vivo biology of E. coli in other environments where it is at low relative abundance, and the framework described here has broad applicability to other highly diverse, low abundance organisms.

13.
Clin Chem ; 59(2): 427-35, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23115054

RESUMEN

BACKGROUND: The current methods for distinguishing the zygosities of twins include ultrasound scanning, which is nondefinitive, and amniocentesis, which is invasive. We explored the use of massively parallel sequencing of maternal plasma DNA for the noninvasive prenatal assessment of the zygosities of twin pregnancies. METHODS: Plasma DNA was extracted from blood collected from 8 women pregnant with twins. Target enrichment and massively parallel sequencing were performed for each plasma DNA library. Apparent fractional fetal DNA concentrations were calculated for multiple genomic regions by determining the ratio of minor to major alleles among single-nucleotide polymorphism sites. Variations in the apparent fractional fetal DNA concentrations between genomic regions were used to infer whether individual fetuses in a twin pair were genotypically different and hence dizygotic. RESULTS: The extent of the variation in the apparent fractional fetal DNA concentration across chromosomes was 0.82-1.35 SDs for monozygotic twin pregnancies and 2.42-4.80 SDs for dizygotic twin pregnancies. The proportions of apparent fractional fetal DNA concentration values that deviated beyond the range expected for stochastic variation were 0.00%-1.93% for monozygotic twin pregnancies and 36.2%-78.1% for dizygotic twin pregnancies. After identifying a pair of twins as likely dizygotic, the method also allowed determination of the fractional fetal DNA concentrations contributed by the individual fetuses of a dizygotic twin pair. CONCLUSIONS: Noninvasive prenatal determination of twin zygosity by maternal plasma DNA sequencing is feasible. It is also possible to determine the relative fractional fetal DNA concentrations for each fetus for dizygotic twin pregnancies.


Asunto(s)
ADN/sangre , ADN/genética , Pruebas de Detección del Suero Materno , Diagnóstico Prenatal/métodos , Análisis de Secuencia de ADN/métodos , Gemelos Dicigóticos/genética , Gemelos Monocigóticos/genética , Femenino , Biblioteca de Genes , Humanos , Polimorfismo de Nucleótido Simple , Embarazo
14.
Prenat Diagn ; 33(7): 675-81, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23595772

RESUMEN

OBJECTIVE: This study aimed to provide an individualized assessment of fetal trisomy 21 and trisomy 18 status for twin pregnancies by maternal plasma DNA sequencing. METHOD: Massively parallel sequencing was performed on the plasma/serum DNA libraries of eight twin pregnancies and 11 singleton pregnancies. The apparent fractional fetal DNA concentrations between genomic regions were assessed to determine the zygosities of the twin pregnancies and to calculate the fetal DNA concentrations of each individual member of dizygotic twin pairs. Z-scores were determined for the detection of trisomy 18 and trisomy 21. RESULTS: Circulating DNA sequencing showed elevated chromosome 21 representation in one set of twins and elevated chromosome 18 representation in another pair of twins. Apparent fractional fetal DNA concentration analysis revealed both sets of twins to be dizygotic. The fractional fetal DNA concentrations for each individual fetus of the dizygotic twin pregnancies were determined. Incorporating the information about the fetal DNA fraction, we ascertained that each fetus contributed adequate amounts of DNA into the maternal circulation for the aneuploidy test result to be interpreted with confidence. CONCLUSION: Noninvasive prenatal assessment of fetal chromosomal aneuploidy for twin pregnancies can be achieved with the use of massively parallel sequencing of cell-free DNA in maternal blood.


Asunto(s)
ADN/sangre , Enfermedades en Gemelos/genética , Pruebas Genéticas/métodos , Diagnóstico Prenatal/métodos , Trisomía/genética , Gemelos/genética , Cromosomas Humanos Par 18/genética , ADN/química , Síndrome de Down/genética , Femenino , Feto/química , Edad Gestacional , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Embarazo , Embarazo Gemelar , Análisis de Secuencia de ADN , Síndrome de la Trisomía 18 , Gemelos Dicigóticos/genética
15.
Nat Cell Biol ; 25(5): 765-777, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37095322

RESUMEN

PBRM1 encodes an accessory subunit of the PBAF SWI/SNF chromatin remodeller, and the inactivation of PBRM1 is a frequent event in kidney cancer. However, the impact of PBRM1 loss on chromatin remodelling is not well examined. Here we show that, in VHL-deficient renal tumours, PBRM1 deficiency results in ectopic PBAF complexes that localize to de novo genomic loci, activating the pro-tumourigenic NF-κB pathway. PBRM1-deficient PBAF complexes retain the association between SMARCA4 and ARID2, but have loosely tethered BRD7. The PBAF complexes redistribute from promoter proximal regions to distal enhancers containing NF-κB motifs, heightening NF-κB activity in PBRM1-deficient models and clinical samples. The ATPase function of SMARCA4 maintains chromatin occupancy of pre-existing and newly acquired RELA specific to PBRM1 loss, activating downstream target gene expression. Proteasome inhibitor bortezomib abrogates RELA occupancy, suppresses NF-κB activation and delays growth of PBRM1-deficient tumours. In conclusion, PBRM1 safeguards the chromatin by repressing aberrant liberation of pro-tumourigenic NF-κB target genes by residual PBRM1-deficient PBAF complexes.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Humanos , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/metabolismo , Cromatina/genética , Proteínas Cromosómicas no Histona/genética , ADN Helicasas/genética , Proteínas de Unión al ADN/genética , Genómica , Neoplasias Renales/metabolismo , FN-kappa B/genética , Proteínas Nucleares/genética , Factores de Transcripción/genética
16.
Nat Commun ; 14(1): 4693, 2023 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-37542071

RESUMEN

Effective infectious disease surveillance in high-risk regions is critical for clinical care and pandemic preemption; however, few clinical diagnostics are available for the wide range of potential human pathogens. Here, we conduct unbiased metagenomic sequencing of 593 samples from febrile Nigerian patients collected in three settings: i) population-level surveillance of individuals presenting with symptoms consistent with Lassa Fever (LF); ii) real-time investigations of outbreaks with suspected infectious etiologies; and iii) undiagnosed clinically challenging cases. We identify 13 distinct viruses, including the second and third documented cases of human blood-associated dicistrovirus, and a highly divergent, unclassified dicistrovirus that we name human blood-associated dicistrovirus 2. We show that pegivirus C is a common co-infection in individuals with LF and is associated with lower Lassa viral loads and favorable outcomes. We help uncover the causes of three outbreaks as yellow fever virus, monkeypox virus, and a noninfectious cause, the latter ultimately determined to be pesticide poisoning. We demonstrate that a local, Nigerian-driven metagenomics response to complex public health scenarios generates accurate, real-time differential diagnoses, yielding insights that inform policy.


Asunto(s)
Fiebre de Lassa , Virus , Humanos , Nigeria/epidemiología , Metagenómica , Fiebre de Lassa/diagnóstico , Fiebre de Lassa/epidemiología , Virus Lassa/genética , Virus/genética
17.
BMC Genomics ; 13: 475, 2012 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-22974120

RESUMEN

BACKGROUND: Extensive genetic diversity in viral populations within infected hosts and the divergence of variants from existing reference genomes impede the analysis of deep viral sequencing data. A de novo population consensus assembly is valuable both as a single linear representation of the population and as a backbone on which intra-host variants can be accurately mapped. The availability of consensus assemblies and robustly mapped variants are crucial to the genetic study of viral disease progression, transmission dynamics, and viral evolution. Existing de novo assembly techniques fail to robustly assemble ultra-deep sequence data from genetically heterogeneous populations such as viruses into full-length genomes due to the presence of extensive genetic variability, contaminants, and variable sequence coverage. RESULTS: We present VICUNA, a de novo assembly algorithm suitable for generating consensus assemblies from genetically heterogeneous populations. We demonstrate its effectiveness on Dengue, Human Immunodeficiency and West Nile viral populations, representing a range of intra-host diversity. Compared to state-of-the-art assemblers designed for haploid or diploid systems, VICUNA recovers full-length consensus and captures insertion/deletion polymorphisms in diverse samples. Final assemblies maintain a high base calling accuracy. VICUNA program is publicly available at: http://www.broadinstitute.org/scientific-community/science/projects/viral-genomics/ viral-genomics-analysis-software. CONCLUSIONS: We developed VICUNA, a publicly available software tool, that enables consensus assembly of ultra-deep sequence derived from diverse viral populations. While VICUNA was developed for the analysis of viral populations, its application to other heterogeneous sequence data sets such as metagenomic or tumor cell population samples may prove beneficial in these fields of research.


Asunto(s)
Genoma Viral/genética , Programas Informáticos , Algoritmos , Biología Computacional
18.
Genome Med ; 14(1): 37, 2022 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-35379360

RESUMEN

BACKGROUND: Carbapenem-resistant Enterobacterales (CRE) are an urgent global health threat. Inferring the dynamics of local CRE dissemination is currently limited by our inability to confidently trace the spread of resistance determinants to unrelated bacterial hosts. Whole-genome sequence comparison is useful for identifying CRE clonal transmission and outbreaks, but high-frequency horizontal gene transfer (HGT) of carbapenem resistance genes and subsequent genome rearrangement complicate tracing the local persistence and mobilization of these genes across organisms. METHODS: To overcome this limitation, we developed a new approach to identify recent HGT of large, near-identical plasmid segments across species boundaries, which also allowed us to overcome technical challenges with genome assembly. We applied this to complete and near-complete genome assemblies to examine the local spread of CRE in a systematic, prospective collection of all CRE, as well as time- and species-matched carbapenem-susceptible Enterobacterales, isolated from patients from four US hospitals over nearly 5 years. RESULTS: Our CRE collection comprised a diverse range of species, lineages, and carbapenem resistance mechanisms, many of which were encoded on a variety of promiscuous plasmid types. We found and quantified rearrangement, persistence, and repeated transfer of plasmid segments, including those harboring carbapenemases, between organisms over multiple years. Some plasmid segments were found to be strongly associated with specific locales, thus representing geographic signatures that make it possible to trace recent and localized HGT events. Functional analysis of these signatures revealed genes commonly found in plasmids of nosocomial pathogens, such as functions required for plasmid retention and spread, as well survival against a variety of antibiotic and antiseptics common to the hospital environment. CONCLUSIONS: Collectively, the framework we developed provides a clearer, high-resolution picture of the epidemiology of antibiotic resistance importation, spread, and persistence in patients and healthcare networks.


Asunto(s)
Carbapenémicos , Transferencia de Gen Horizontal , Antibacterianos/farmacología , Carbapenémicos/farmacología , Humanos , Plásmidos/genética , Estudios Prospectivos
19.
Bioconjug Chem ; 21(9): 1581-7, 2010 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-20722369

RESUMEN

RNA interference (RNAi) is a gene-silencing phenomenon whereby double-stranded RNA (dsRNA) triggers the sequence-specific degradation of homologous mRNA. RNAi has been quickly and widely applied to discover gene functions and holds great potential to provide a new class of therapeutic agents. However, new chemistry and delivery approaches are greatly needed to silence disease-causing genes without toxic effects. We reasoned that conjugation of the cholesterol moiety to cationic lipids would enhance RNAi efficiencies and lower the toxic effects of lipid-mediated RNAi delivery. Here, we report the first design and synthesis of new cholesterol-conjugated cationic lipids for RNAi delivery using microwave-assisted quaternization (MAQ) of tertiary amines. This strategy can be employed to develop new classes of nonviral gene delivery agents under safe and fast reaction conditions.


Asunto(s)
Aminas/química , Sistemas de Liberación de Medicamentos/métodos , Diseño de Fármacos , Lípidos/síntesis química , Microondas , Interferencia de ARN , Cationes , Colesterol/química , Lípidos/química , ARN Bicatenario/genética , ARN Bicatenario/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo
20.
Nat Biotechnol ; 37(2): 160-168, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30718881

RESUMEN

Metagenomic sequencing has the potential to transform microbial detection and characterization, but new tools are needed to improve its sensitivity. Here we present CATCH, a computational method to enhance nucleic acid capture for enrichment of diverse microbial taxa. CATCH designs optimal probe sets, with a specified number of oligonucleotides, that achieve full coverage of, and scale well with, known sequence diversity. We focus on applying CATCH to capture viral genomes in complex metagenomic samples. We design, synthesize, and validate multiple probe sets, including one that targets the whole genomes of the 356 viral species known to infect humans. Capture with these probe sets enriches unique viral content on average 18-fold, allowing us to assemble genomes that could not be recovered without enrichment, and accurately preserves within-sample diversity. We also use these probe sets to recover genomes from the 2018 Lassa fever outbreak in Nigeria and to improve detection of uncharacterized viral infections in human and mosquito samples. The results demonstrate that CATCH enables more sensitive and cost-effective metagenomic sequencing.


Asunto(s)
Biología Computacional/métodos , Genoma Viral , Metagenoma , Metagenómica , Animales , Culicidae/virología , Brotes de Enfermedades , Biblioteca de Genes , Variación Genética , Genómica , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Fiebre de Lassa/virología , Nigeria/epidemiología , Sondas de Oligonucleótidos , Oligonucleótidos/genética , Análisis de Secuencia de ADN , Virosis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA