Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
BMC Plant Biol ; 22(1): 553, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36456926

RESUMEN

BACKGROUND: Spur, a structure capable of producing and storing nectar, not only plays a vital role in the pollination process but also promotes the rapid diversification of some plant lineages, which is considered a key innovation in plants. Spur is the focus of many studies, such as evolution and ecological hypothesis, but the current understanding of spur development is limited. High-throughput sequencing of Impatiens uliginosa was carried out to study the molecular mechanism of its spur development, which is believed to provide some insights into the spur development of Impatiens. RESULTS: Transcriptomic sequencing and analysis were performed on spurs and limbs of I. uliginosa at three developmental stages. A total of 47.83 Gb of clean data were obtained, and 49,716 unigene genes were assembled. After comparison with NR, Swiss-Prot, Pfam, COG, GO and KEGG databases, a total of 27,686 genes were annotated successfully. Through comparative analysis, 19,356 differentially expressed genes were found and enriched into 208 GO terms and 146 KEGG pathways, among which plant hormone signal transduction was the most significantly enriched pathway. One thousand thirty-two transcription factors were identified, which belonged to 33 TF families such as MYB, bHLH and TCP. Twenty candidate genes that may be involved in spur development were screened and verified by qPCR, such as SBP, IAA and ABP. CONCLUSIONS: Transcriptome data of different developmental stages of spurs were obtained, and a series of candidate genes related to spur development were identified. The importance of genes related to cell cycle, cell division, cell elongation and hormones in spur development was clarified. This study provided valuable information and resources for understanding the molecular mechanism of spur development in Impatiens.


Asunto(s)
Impatiens , Transcriptoma , Secuenciación del Exoma , Ciclo Celular , Bases de Datos de Proteínas
2.
BMC Genomics ; 21(1): 435, 2020 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-32586350

RESUMEN

BACKGROUND: Fatty liver is a high incidence of perinatal disease in dairy cows caused by negative energy balance, which seriously threatens the postpartum health and milk production. It has been reported that lysine acetylation plays an important role in substance and energy metabolism. Predictably, most metabolic processes in the liver, as a vital metabolic organ, are subjected to acetylation. Comparative acetylome study were used to quantify the hepatic tissues from the severe fatty liver group and normal group. Combined with bioinformatics analysis, this study provides new insights for the role of acetylation modification in fatty liver disease of dairy cows. RESULTS: We identified 1841 differential acetylation sites on 665 proteins. Among of them, 1072 sites on 393 proteins were quantified. Functional enrichment analysis shows that higher acetylated proteins are significantly enriched in energy metabolic pathways, while lower acetylated proteins are significantly enriched in pathways related to immune response, such as drug metabolism and cancer. Among significantly acetylated proteins, many mitochondrial proteins were identified to be interacting with multiple proteins and involving in lipid metabolism. Furthermore, this study identified potential important proteins, such as HADHA, ACAT1, and EHHADH, which may be important regulatory factors through modification of acetylation in the development of fatty liver disease in dairy cows and possible therapeutic targets for NAFLD in human beings. CONCLUSION: This study provided a comprehensive acetylome profile of fatty liver of dairy cows, and revealed important biological pathways associated with protein acetylation occurred in mitochondria, which were involved in the regulation of the pathogenesis of fatty liver disease. Furthermore, potential important proteins, such as HADHA, ACAT1, EHHADH, were predicted to be essential regulators during the pathogenesis of fatty liver disease. The work would contribute to the understanding the pathogenesis of NAFLD, and inspire in the development of new therapeutic strategies for NAFLD.


Asunto(s)
Enfermedades de los Bovinos/metabolismo , Hígado Graso/veterinaria , Mitocondrias Hepáticas/metabolismo , Proteínas Mitocondriales/metabolismo , Proteómica/métodos , Acetilación , Animales , Estudios de Casos y Controles , Bovinos , Cromatografía Liquida , Biología Computacional , Metabolismo Energético , Hígado Graso/metabolismo , Femenino , Metabolismo de los Lípidos , Mapas de Interacción de Proteínas , Espectrometría de Masas en Tándem
3.
Appl Microbiol Biotechnol ; 104(11): 5039-5052, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32248438

RESUMEN

Candida albicans invasion is one of the most serious fungal infections in clinical history. In recent years, because of the widespread use of immunosuppressive drugs, chemotherapy drugs, glucocorticoids, and broad-spectrum antibiotics, serious drug resistance has been reported; therefore, a new type of antifungal drug needs to be developed. In this study, we found that Nerol (NEL) had strong antimicrobial activity and 0.77 µL/mL NEL was the minimum inhibitory concentration (MIC) effective against C. albicans. We determined the change of the growth curve of NEL for C. albicans, to identify the trend of NEL activity against C. albicans. Through the determination of the ergosterol content and glucose-induced extracellular fluid acidification of NEL on C. albicans, we found that NEL inhibits the growth of C. albicans by destroying cell membranes. This finding was also supported by the expression of SAP (secreted aspartyl proteinase) involved in cell membrane synthesis. Finally, demonstrations of phenotype investigation, colony-forming unit (CFU) counts, and PAS (periodic acid-Schiff) staining were conducted to prove that NEL had the ability to treated mouse oral C. albicans infection and vaginal C. albicans infection. This research may help us to investigate new antimicrobial agents for treating C. albicans infections. KEY POINTS: • NEL can inhibit the growth of C. albicans. • NEL destroys the cell membrane formation and permeability of C. albicans. • NEL can treat vulvovaginal candidiasis and oropharyngeal candidiasis in mice. • NEL could be used as a possible antifungal agent.


Asunto(s)
Monoterpenos Acíclicos/uso terapéutico , Antifúngicos/uso terapéutico , Candida albicans/efectos de los fármacos , Candidiasis Vulvovaginal/tratamiento farmacológico , Enfermedades de la Boca/tratamiento farmacológico , Extractos Vegetales/uso terapéutico , Animales , Proteasas de Ácido Aspártico/genética , Candida albicans/crecimiento & desarrollo , Candidiasis/tratamiento farmacológico , Candidiasis Vulvovaginal/microbiología , Membrana Celular/efectos de los fármacos , Ergosterol/análisis , Femenino , Masculino , Ratones Endogámicos BALB C , Pruebas de Sensibilidad Microbiana , Boca/microbiología , Enfermedades de la Boca/microbiología
4.
Appl Microbiol Biotechnol ; 103(21-22): 9037-9055, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31659418

RESUMEN

The invasion of Candida albicans is one of the most common fungal infections seen in clinical practice, and serious drug resistance has been reported in recent years. Therefore, new anti-C. albicans drugs must be introduced. In this research, it was demonstrated that cinnamaldehyde (CA) shows strong antimicrobial activity, with 0.26 mg/mL CA being the minimum inhibitory concentration to manage C. albicans. Extraordinarily, we detected that CA accumulated the intracellular reactive oxygen species (ROS) and enhanced the calcium concentration in the cytoplasm and mitochondria through flow cytometry. In addition, we observed that C. albicans cells released Cytochrome c from the mitochondria to the cytoplasm, depolarized the mitochondrial membrane potential, and activated the metacaspase when exposed to 0.065, 0.13, 0.26, and 0.52 mg/mL CA. Furthermore, to confirm that CA introduces the C. albicans apoptosis, we discovered that when the phosphatidylserine was exposed, DNA damage and chromatin condensation occurred, which were detected by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) and 4',6-diamidino-2-phenylindole (DAPI) staining. Finally, demonstrations of phenotype investigation, colony-forming unit (CFU) counts, and periodic acid-Schiff (PAS) staining were conducted to prove that CA possessed the ability to treat oropharyngeal candidiasis (OPC) and vulvovaginal candidiasis (VVC). From the above, our research indicates that CA is a promising antifungal candidate when applied to C. albicans infections.


Asunto(s)
Acroleína/análogos & derivados , Antifúngicos/farmacología , Apoptosis/efectos de los fármacos , Candida albicans/crecimiento & desarrollo , Candidiasis Bucal/tratamiento farmacológico , Candidiasis Vulvovaginal/tratamiento farmacológico , Acroleína/farmacología , Animales , Calcio/metabolismo , Candidiasis Bucal/microbiología , Candidiasis Bucal/prevención & control , Candidiasis Vulvovaginal/microbiología , Candidiasis Vulvovaginal/prevención & control , Citocromos c/metabolismo , Modelos Animales de Enfermedad , Femenino , Masculino , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ratones , Ratones Endogámicos BALB C , Pruebas de Sensibilidad Microbiana , Mitocondrias/metabolismo , Especies Reactivas de Oxígeno/metabolismo
5.
Knee Surg Sports Traumatol Arthrosc ; 26(3): 719-726, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28028571

RESUMEN

PURPOSE: To evaluate the correlation between injury patterns of the medial patellofemoral ligament (MPFL) and vastus medialis obliquus (VMO) after acute first-time lateral patellar dislocation (LPD) in adults. METHODS: Magnetic resonance imaging (MRI) was prospectively performed in 132 consecutive adults with acute first-time LPD. Images were acquired and evaluated using standardized protocols. Injury patterns of MPFL were grouped by location and severity for analysis of the prevalence of VMO injury. RESULTS: MRI demonstrated VMO injury in 63 (47.7%) patients. Twenty (38.5%) and 43 cases (56.6%) were present in partial and complete MPFL tear subgroups, respectively. Compared with partial MPFL tears, complete tears showed a higher prevalence of VMO injury (P = 0.044). The mean coronal (28.5 mm) and mean sagittal VMO elevations (20.7 mm) were higher in the complete MPFL tear subgroup than in the partial tear subgroup (19.8 mm, P = 0.005; 11.9 mm, P < 0.001). No correlations were identified between the prevalence of VMO injury and location subgroups of MPFL injury (n.s.). Mean VMO elevations were higher in isolated femoral-side (FEM) and combined MPFL tear (COM) subgroups (mean coronal VMO elevation of 29 mm and mean sagittal VMO elevation of 20.8 mm in the FEM subgroup; mean coronal VMO elevation of 29.6 mm and mean sagittal VMO elevation of 23.1 mm in the COM subgroup) than in the isolated patellar-side MPFL tear (PAT) subgroup (P = 0.022, P < 0.001) (mean coronal VMO elevation of 20.7 mm and mean sagittal VMO elevation of 10.6 mm). CONCLUSIONS: Complete MPFL tear predisposes to VMO injury and has a higher elevation of torn VMO after acute first-time LPD in adults. Isolated femoral-side and combined MPFL tears predispose to higher elevation of torn VMO. LEVEL OF EVIDENCE: IV.


Asunto(s)
Imagen por Resonancia Magnética/métodos , Luxación de la Rótula/diagnóstico por imagen , Ligamento Rotuliano/lesiones , Articulación Patelofemoral/lesiones , Músculo Cuádriceps/lesiones , Adulto , Femenino , Humanos , Masculino , Procedimientos Ortopédicos , Luxación de la Rótula/cirugía , Ligamento Rotuliano/diagnóstico por imagen , Ligamento Rotuliano/cirugía , Articulación Patelofemoral/diagnóstico por imagen , Articulación Patelofemoral/cirugía , Músculo Cuádriceps/diagnóstico por imagen , Músculo Cuádriceps/cirugía , Rotura/patología , Adulto Joven
6.
Appl Microbiol Biotechnol ; 101(8): 3335-3345, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28224196

RESUMEN

New anti-Candida albicans drugs are needed due to the emergence of resistant cases in recent years. Perillaldehyde (PAE) is a natural monoterpenoid compound derived from Perilla frutescens. The minimum inhibitory concentration of PAE against C. albicans was 0.4 µL/mL. We aimed to elucidate the antifungal mode of action of PAE against C. albicans. The antifungal activity of PAE against C. albicans was found to correlate with an elevation in intracellular Ca2+ and accumulation of ROS. Several downstream apoptosis events such as the disruption of mitochondrial membrane potential, phosphatidylserine externalization, cytochrome c release, and metacaspase activation were observed in PAE-treated cells. DNA damage and nuclear fragmentation assays also revealed apoptosis of C. albicans cells. In summary, by means of fluorescent microscopy, flow cytometer analysis, and Western blot, our data uncovered that PAE exerts its antifungal activity through Ca2+ and oxidative stress-mediated apoptosis mechanisms. This study deciphered the mode of action of PAE, which will be useful in the design of improved antifungal therapies.


Asunto(s)
Apoptosis , Calcio/metabolismo , Candida albicans/efectos de los fármacos , Monoterpenos/farmacología , Estrés Oxidativo , Candida albicans/fisiología , Citocromos c/metabolismo , Fragmentación del ADN/efectos de los fármacos , Citometría de Flujo , Pruebas de Sensibilidad Microbiana , Microscopía Fluorescente , Especies Reactivas de Oxígeno/metabolismo
7.
Proc Natl Acad Sci U S A ; 110(28): E2572-81, 2013 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-23798432

RESUMEN

The androgen receptor (AR) and the phosphoinositide 3-kinase (PI3K)/protein kinase B/mammalian target of rapamycin (mTOR) signaling are two of the major proliferative pathways in a number of tissues and are the main therapeutic targets in various disorders, including prostate cancer (PCa). Previous work has shown that there is reciprocal feedback regulation of PI3K and AR signaling in PCa, suggesting that cotargeting both pathways may enhance therapeutic efficacy. Here we show that proteins encoded by two androgen-regulated genes, kallikrein related peptidase 4 (KLK4) and promyelocytic leukemia zinc finger (PLZF), integrate optimal functioning of AR and mTOR signaling in PCa cells. KLK4 interacts with PLZF and decreases its stability. PLZF in turn interacts with AR and inhibits its function as a transcription factor. PLZF also activates expression of regulated in development and DNA damage responses 1, an inhibitor of mTORC1. Thus, a unique molecular switch is generated that regulates both AR and PI3K signaling. Consistently, KLK4 knockdown results in a significant decline in PCa cell proliferation in vitro and in vivo, decreases anchorage-independent growth, induces apoptosis, and dramatically sensitizes PCa cells to apoptosis-inducing agents. Furthermore, in vivo nanoliposomal KLK4 siRNA delivery in mice bearing PCa tumors results in profound remission. These results demonstrate that the activities of AR and mTOR pathways are maintained by KLK4, which may thus be a viable target for therapy.


Asunto(s)
Andrógenos/metabolismo , Calicreínas/fisiología , Neoplasias de la Próstata/metabolismo , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Muerte Celular , División Celular , Activación Enzimática , Fase G1 , Técnicas de Silenciamiento del Gen , Humanos , Calicreínas/genética , Masculino , Neoplasias de la Próstata/patología , Receptores Androgénicos/metabolismo , Proteínas Quinasas S6 Ribosómicas/metabolismo
8.
Yao Xue Xue Bao ; 49(7): 1000-6, 2014 Jul.
Artículo en Zh | MEDLINE | ID: mdl-25233630

RESUMEN

This study aims to investigate the effects of fibroblast growth factor 21 (FGF-21) on learning and memory abilities and antioxidant capacity of D-galactose-induced aging mice. Kunming mice (37.1 +/- 0.62) g were randomly divided into normal control group, model group and FGF-21 high, medium and low dose groups (n = 8). Each group was injected in cervical part subcutaneously with D-galactose 180 mg x kg(-1) x d(-1) once a day for 8 weeks. At the same time, FGF-21-treated mice were administered with FGF-21 by giving subcutaneous injection in cervical part at the daily doses of 5, 2 and 1 mg x kg(-1) x d(-1). The normal control group was given with normal saline by subcutaneous injection in cervical part. At seventh week of the experiment, the learning and memory abilities of mice were determined by water maze and jumping stand tests. At the end of the experiment, the mice were sacrificed and the cells damage of hippocampus was observed by HE staining in each group. Reactive oxygen species (ROS), malondialdehyde (MDA), superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase (CAT) and total antioxidant capacity (T-AOC) in the brain of mice were determined. The results showed that different doses of FGF-21 could reduce the time reaching the end (P < 0.01 or P < 0.05) and the number of touching blind side (P < 0.01 or P < 0.05) in the water maze comparing with the model group. It could also prolong the latency time (P < 0.05) and decrease the number of errors (P < 0.01 or P < 0.05) in the step down test. The result of HE staining showed that FGF-21 could significantly reduce brain cell damage in the hippocampus. The ROS and MDA levels of three different doses FGF-21 treatment group reduced significantly than that of the model group [(5.58 +/- 1.07), (7.78 +/- 1.92), (9.03 +/- 1.77) vs (12.75 +/- 2.02) pmol (DCF) x min(-1) x mg(-1), P < 0.01 or P < 0.05], [(2.92 +/- 0.71), (4.21 +/- 0.81), (4.41 +/- 0.97) vs (5.62 +/- 0.63) nmol x mg(-1) (protein), P < 0.01]. Comparing with the model group, the activities of SOD, GPx, CAT and T-AOC of the three different doses FGF-21 treatment groups were also improved in a dose-dependent manner. This study demonstrates that FGF-21 can ameliorate learning and memory abilities of D-galactose induced aging mice, improve the antioxidant abilities in brain tissue and delay brain aging. This finding provides a theoretical support for clinical application of FGF-21 as a novel therapeutics for preventing aging.


Asunto(s)
Envejecimiento/efectos de los fármacos , Antioxidantes/metabolismo , Encéfalo/efectos de los fármacos , Factores de Crecimiento de Fibroblastos/farmacología , Aprendizaje por Laberinto/efectos de los fármacos , Memoria/efectos de los fármacos , Animales , Catalasa/metabolismo , Galactosa , Glutatión Peroxidasa/metabolismo , Hipocampo/efectos de los fármacos , Malondialdehído/metabolismo , Ratones , Superóxido Dismutasa/metabolismo
9.
J Agric Food Chem ; 72(2): 1276-1291, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38179648

RESUMEN

Microorganisms rely on diverse ion transport and trace elements to sustain growth, development, and secondary metabolism. Manganese (Mn2+) is essential for various biological processes and plays a crucial role in the metabolism of human cells, plants, and yeast. In Aspergillus flavus, we confirmed that Pmr1 localized in cis- and medial-Golgi compartments was critical in facilitating Mn2+ transport, fungal growth, development, secondary metabolism, and glycosylation. In comparison to the wild type, the Δpmr1 mutant displayed heightened sensitivity to environmental stress, accompanied by inhibited synthesis of aflatoxin B1, kojic acid, and a substantial reduction in pathogenicity toward peanuts and maize. Interestingly, the addition of exogenous Mn2+ effectively rectified the developmental and secondary metabolic defects in the Δpmr1 mutant. However, Mn2+ supplement failed to restore the growth and development of the Δpmr1Δgdt1 double mutant, which indicated that the Gdt1 compensated for the functional deficiency of pmr1. In addition, our results showed that pmr1 knockout leads to an upregulation of O-glycosyl-N-acetylglucose (O-GlcNAc) and O-GlcNAc transferase (OGT), while Mn2+ supplementation can restore the glycosylation in A. flavus. Collectively, this study indicates that the pmr1 regulates Mn2+ via Golgi and maintains growth and metabolism functions of A. flavus through regulation of the glycosylation.


Asunto(s)
ATPasas Transportadoras de Calcio , Proteínas de Saccharomyces cerevisiae , Humanos , ATPasas Transportadoras de Calcio/metabolismo , Aflatoxina B1/metabolismo , Aspergillus flavus/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo
10.
Zhongguo Dang Dai Er Ke Za Zhi ; 15(10): 860-5, 2013 Oct.
Artículo en Zh | MEDLINE | ID: mdl-24131839

RESUMEN

OBJECTIVE: To assess the efficiency and safety of human neural progenitor cells (hNPCs) transplantation in the treatment of pervasive developmental disorder (PDD) in children. METHODS: Twenty-two children with PDD were treated, including 13 children with Rett syndrome and 9 children with autism. They accepted hNPCs transplantation voluntarily. hNPCs derived from aborted fetal tissue were injected into the lateral ventricle of the patients under supersonic guidance. All patients were assessed according to the Autism Behavior Checklist before operation, at one and six months post operation, and one year later. RESULTS: No delayed complications resulting from this therapy were observed. The clinical symptoms of 17 patients, including 8 patients with autism and 9 patients with Rett syndrome, improved in varying degrees. The assessment results of the Autism Behavior Checklist for children with autism showed that compared with pre-operative function, social communication scores were significantly reduced at six months after transplantation, and total scores and social communication and language scores were also significantly reduced 1 year after transplantation (P<0.05). CONCLUSIONS: These results suggest that hNPCs transplantation is effective and safe for treatment of PPD in children. It deserves a further study.


Asunto(s)
Trastornos Generalizados del Desarrollo Infantil/terapia , Células-Madre Neurales/trasplante , Niño , Preescolar , Femenino , Humanos , Masculino , Síndrome de Rett/terapia
11.
Zhongguo Dang Dai Er Ke Za Zhi ; 15(11): 948-53, 2013 Nov.
Artículo en Zh | MEDLINE | ID: mdl-24229586

RESUMEN

This study aimed to investigate the clinical effect of transplantation of CD133⁺ peripheral blood stem cells or umbilical cord mesenchymal stem cells via the hepatic artery in children with type II hyperammonemia and its possible action mechanism. Umbilical cord mesenchymal stem cells were obtained by collecting cord blood (100-150 mL) from healthy fetuses and separating stem cell suspension (5 mL) from the cord blood by hydroxyethyl starch sedimentation. CD133⁺ peripheral blood stem cells were obtained by mobilizing peripheral blood from the fathers of sick children using recombinant human granulocyte colony-stimulating factor for 5 days, collecting mononuclear cells (120 mL), and separating out CD133⁺ cells by sorting. With catheterization and percutaneous puncture, the obtained stem cells were slowly injected into the liver of sick children via the hepatic artery. The changes in clinical symptoms and laboratory indices such as blood ammonia, liver function, and arginine and citrulline concentrations were observed. After stem cell transplantation via the hepatic artery, the 6 children showed significantly decreased blood ammonia levels, and their blood ammonia levels slowly increased 1 to 2 weeks later, but remained below 100 µmol/L, and changes in glutamic-pyruvic transaminase levels were similar to blood ammonia. Plasma citrulline and arginine concentrations increased significantly after transplantation and the increase in citrulline level exceeded the increase in arginine level. An 8 months follow-up visit for one typical patient showed that the weight and height increased after transplantation and sleep was improved without night crying. The child could actively gaze at interesting objects instead of responding indifferently and started to say simple words. With regard to fine motor skills, the child could pinch things with the thumb and middle finger instead of displaying a lack of hand-eye coordination and progress was also made in gross motor skills. Gesell test showed that the child made progress for an average of 3.82 months in all areas. It was concluded that after stem cell transplantation, children with type II hyperammonemia have decreased blood ammonia levels, stable and improved liver function and steadily increased plasma citrulline and arginine concentrations. They display a progressive trend in such aspects as movement, language and environmental adaptability. It is hypothesized that stem cell transplantation via the hepatic artery partially or totally activates, or provides supplementary ornithine carbamoyl transferase, so that plasma citrulline and arginine concentrations increase and urea cycle disorder can be corrected to some extent.


Asunto(s)
Hiperamonemia/cirugía , Trasplante de Células Madre , Antígeno AC133 , Amoníaco/sangre , Antígenos CD/análisis , Arginina/sangre , Citrulina/sangre , Femenino , Glicoproteínas/análisis , Arteria Hepática , Humanos , Hiperamonemia/sangre , Lactante , Masculino , Péptidos/análisis
13.
Zhongguo Dang Dai Er Ke Za Zhi ; 14(3): 161-4, 2012 Mar.
Artículo en Zh | MEDLINE | ID: mdl-22433398

RESUMEN

Maple syrup urine disease is a common amino acids metabolic disease. In most patients, onset occurs in the neonatal period and infancy. In this study, the case of a school boy with acute encephalopathy due to late-onset maple syrup urine disease is summarized. The boy (8.5 years) was admitted because of acute encephalopathy after suffering from infection for two days at the age of eight and a half years. Metabolic acidosis, hyperuricemia and decreased protein level in cerebrospinal fluid were found by general laboratory tests. Magnetic resonance imaging of the brain revealed signal intensity abnormalities in the bilateral cerebellum dentate nucleus, brainstem, thalamus, putamen, caudate nucleus and cortex of the cerebral hemispheres. On T1WI and T2WI scanning, hyperintensive signal was found. Blood leucine and valine were significantly elevated. Urinary 2-hydroxy isovaleric acid, 3-hydroxybutyric acid, 2-keto isovaleric acid, and 2-keto acid also increased. Both the blood amino acid and urine organic acid profiles led to the diagnosis of maple syrup urine disease. In the acute period, the patient was treated with a large dose of vitamin B1, glucose, L-carnitine and a protein-restrict diet. The patient's condition improved significantly after five days of treatment, and he recovered completely two days later. Afterwards, treatment with vitamin B1, L-carnitine and a protein-restrict diet (1 g/kg/day) was continued. One and a half months later, blood amino acids and urine organic acids returned to normal. Magnetic resonance imaging of the brain also indicated a great improvement. It was concluded that inborn metabolic disease should be considered in the patients with an onset similar to acute encephalopathy. Early diagnosis and proper treatment can prevent brain damage and improve prognosis.


Asunto(s)
Encefalopatías/etiología , Enfermedad de la Orina de Jarabe de Arce/complicaciones , Enfermedad Aguda , Niño , Humanos , Imagen por Resonancia Magnética , Masculino , Enfermedad de la Orina de Jarabe de Arce/diagnóstico , Enfermedad de la Orina de Jarabe de Arce/terapia
14.
Zhongguo Dang Dai Er Ke Za Zhi ; 14(10): 759-62, 2012 Oct.
Artículo en Zh | MEDLINE | ID: mdl-23092568

RESUMEN

OBJECTIVE: To study the clinical efficacy of transplantation of human neural progenitor cells (hNPCs) in the treatment of severe cerebral palsy (CP) in children. METHODS: Forty-five children with CP were voluntarily accepted transplantation of hNPCs. The cells obtained from the forebrain of 10 to 12-week-fetus were cultured and amplified into hNPCs. Then the hNPCs were injected into the cerebral ventricle of the patients with the supersonic guidance. RESULTS: Dyssomnia, irritability and muscular tension were improved in one patient 3 days after transplantation. The clinical improvements were observed in the majority of the patients 1 month after transplantation. The therapeutic effects slowed down 3 to 6 months after transplantation. One year after transplantation the gross and fine motor skills and the congnition ability in the transplantation group were considerably surpassed to those in the control group. No delayed severe complications were observed after transplantation. No tumorigenesis was noted 5 years after transplantation. CONCLUSIONS: The transplantation of hNPCs as a novel therapy is effective and safe for severe CP. Many investigations are needed to evaluate the effect of the therapy.


Asunto(s)
Parálisis Cerebral/terapia , Células-Madre Neurales/trasplante , Preescolar , Femenino , Humanos , Lactante , Masculino
15.
J Fungi (Basel) ; 8(6)2022 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-35736121

RESUMEN

sfgA is known as a key negative transcriptional regulator gene of asexual sporulation and sterigmatocystin production in Aspergillus nidulans. However, here, we found that the homolog sfgA gene shows a broad and complex regulatory role in governing growth, conidiation, sclerotia formation, secondary metabolism, and environmental stress responses in Aspergillus flavus. When sfgA was deleted in A. flavus, the fungal growth was slowed, but the conidiation was significantly increased, and the sclerotia formation displayed different behavior at different temperatures, which increased at 30 °C but decreased at 36 °C. In addition, sfgA regulated aflatoxin biosynthesis in a complex way that was associated with the changes in cultured conditions, and the increased production of aflatoxin in the ∆sfgA mutant was associated with a decrease in sclerotia size. Furthermore, the ∆sfgA mutant exhibited sensitivity to osmotic, oxidative, and cell wall stresses but still produced dense conidia. Transcriptome data indicated that numerous development- and secondary-metabolism-related genes were expressed differently when sfgA was deleted. Additionally, we also found that sfgA functions downstream of fluG in A. flavus, which is consistent with the genetic position in FluG-mediated conidiation in A. nidulans. Collectively, sfgA plays a critical role in the development, secondary metabolism, and stress responses of A. flavus, and sfgA renders A. flavus more stable to the external environment.

16.
Antioxidants (Basel) ; 11(2)2022 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-35204061

RESUMEN

Vulvovaginal candidiasis (VVC) is one of the most frequent diseases induced by Candida albicans (C. albicans) during pregnancy, which results in enormous pain to women and their partners in daily life. Perillaldehyde (PAE), a natural monoterpenoid, has significant anti-microbial, anti-inflammatory and anti-oxidation effects. Reactive oxygen species (ROS) are key factors for the host to resist the invasion of fungi. However, excess ROS can cause additional damage independent of the pathogen itself, and the mechanism of ROS in VVC has not been investigated. In this murine study, we revealed that C. albicans infection increased the expression of NADPH oxidase 2 (NOX2) and the content of malonaldehyde (MDA). C. albicans inhibited the activity of antioxidant enzymes in the vagina, including superoxide dismutase (SOD), Catalase (CAT), glutathione peroxidase (GSH-PX) and heme oxygenase (HO-1), which were returned to normal levels after treatment with PAE. Furthermore, PAE inhibited the activities of Keap1 and promoted Nrf2 transfer from cytoplasm to nucleus, which were mediated by excessive accumulation of ROS in the VVC mice. In this study, we also indicated that PAE inhibited the apoptosis of vagina cells via Caspase 9- Caspase 7-PARP pathway and prevented the release of IL-1ꞵ in VVC mice. In summary, this study revealed that the treatment of VVC in mice with PAE might be mediated by inhibition of ROS, and established the therapeutic potential of PAE as an antifungal agent for the treatment of VVC.

17.
Am J Cancer Res ; 12(1): 327-336, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35141021

RESUMEN

Six Transmembrane Protein of Prostate 2 (STAMP2) is critical for prostate cancer (PCa) growth. We previously showed that STAMP2 regulates the expression of stress induced transcription factor ATF4, which is implicated in starvation-induced autophagy. We therefore investigated whether STAMP2 is involved in the regulation of autophagy in PCa cells. Here we show that STAMP2 suppresses autophagy in PCa cells through modulation of the integrated stress response axis. We also find that STAMP2 regulates mitochondrial respiration. These findings suggest that STAMP2 has significant metabolic effects through mitochondrial function and autophagy, both of which support PCa growth.

18.
Signal Transduct Target Ther ; 7(1): 255, 2022 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-35896532

RESUMEN

SARS-CoV-2, the culprit pathogen of COVID-19, elicits prominent immune responses and cytokine storms. Intracellular Cl- is a crucial regulator of host defense, whereas the role of Cl- signaling pathway in modulating pulmonary inflammation associated with SARS-CoV-2 infection remains unclear. By using human respiratory epithelial cell lines, primary cultured human airway epithelial cells, and murine models of viral structural protein stimulation and SARS-CoV-2 direct challenge, we demonstrated that SARS-CoV-2 nucleocapsid (N) protein could interact with Smad3, which downregulated cystic fibrosis transmembrane conductance regulator (CFTR) expression via microRNA-145. The intracellular Cl- concentration ([Cl-]i) was raised, resulting in phosphorylation of serum glucocorticoid regulated kinase 1 (SGK1) and robust inflammatory responses. Inhibition or knockout of SGK1 abrogated the N protein-elicited airway inflammation. Moreover, N protein promoted a sustained elevation of [Cl-]i by depleting intracellular cAMP via upregulation of phosphodiesterase 4 (PDE4). Rolipram, a selective PDE4 inhibitor, countered airway inflammation by reducing [Cl-]i. Our findings suggested that Cl- acted as the crucial pathological second messenger mediating the inflammatory responses after SARS-CoV-2 infection. Targeting the Cl- signaling pathway might be a novel therapeutic strategy for COVID-19.


Asunto(s)
COVID-19 , Cloro/metabolismo , MicroARNs , Animales , COVID-19/genética , Humanos , Inflamación/patología , Ratones , MicroARNs/metabolismo , Proteínas de la Nucleocápside , Mucosa Respiratoria/metabolismo , Mucosa Respiratoria/patología , SARS-CoV-2
19.
Cancer Med ; 10(2): 563-574, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33356013

RESUMEN

The low rate of durable response against relapsed and/or refractory multiple myeloma (RRMM) in recent studies indicates that chimeric antigen receptor T-cell (CART) treatment is yet to be optimized. This study aims to investigate the safety and efficacy of sequential infusion of CD19-CART and B-cell maturation antigen (BCMA)-CARTs for RRMM with a similar 3 + 3 dose escalation combined with a toxicity sentinel design. We enrolled 10 patients, among whom 7 received autologous infusion and 3 received allogeneic infusion. The median follow-up time was 20 months. The most common grade 3/4 treatment-emergent toxicities were hematological toxicities. Cytokine-release syndrome (CRS) adverse reactions were grade 1/2 in 9 out of 10 subjects. No dose-limited toxicity (DLT) was observed for BCMA-CAR-positive T cells ≤5 × 107 /kg), while two patients with dose-levels of 5-6.5 × 107 /kg experienced DLTs. The overall response rate was 90% (five partial responses and four stringent complete responses). Three out of four patients with stringent complete responses to autologous CART had progression-free survival for over 2 years. The three patients with allogeneic CART experienced disease progression within 2 months. These results evidence the sequential infusion's preliminarily tolerability and efficacy in RRMM, and present a simple and safe design applicable for the establishment of multiple CART therapy.


Asunto(s)
Antígenos CD19/inmunología , Antígeno de Maduración de Linfocitos B/inmunología , Resistencia a Antineoplásicos , Inmunoterapia Adoptiva/mortalidad , Mieloma Múltiple/terapia , Recurrencia Local de Neoplasia/terapia , Receptores Quiméricos de Antígenos/inmunología , Anciano , Femenino , Estudios de Seguimiento , Humanos , Inmunoterapia Adoptiva/métodos , Masculino , Persona de Mediana Edad , Mieloma Múltiple/inmunología , Mieloma Múltiple/patología , Recurrencia Local de Neoplasia/inmunología , Recurrencia Local de Neoplasia/patología , Pronóstico , Terapia Recuperativa , Tasa de Supervivencia
20.
J Cell Biochem ; 109(3): 606-14, 2010 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-20039312

RESUMEN

There is increasing evidence to suggest that embryonic stem cells (ESCs) are capable of differentiating into hepatocytes in vitro. In this study, we used a combination of cytokines and sodium butyrate in a novel three-step procedure to efficiently direct the differentiation of mouse ESCs into hepatocytes. Mouse ESCs were first differentiated into definitive endoderm cells by 3 days of treatment with Activin A. The definitive endoderm cells were then differentiated into hepatocytes by the addition of acidic fibroblast growth factor (aFGF) and sodium butyrate to the culture medium for 5 days. After 10 days of further in vitro maturation, the morphological and phenotypic markers of hepatocytes were characterized using immunohistochemistry, immunoblotting, and reverse transcription-polymerase chain reaction (RT-PCR). Furthermore, the cells were tested for functions associated with mature hepatocytes, including glycogen storage and indocyanine green uptake and release, and the ratio of hepatic differentiation was determined by counting the percentage of albumin-positive cells. In the presence of medium containing cytokines and sodium butyrate, numerous epithelial cells resembling hepatocytes were observed, and approximately 74% of the cells expressed the hepatic marker, albumin, after 18 days in culture. RT-PCR analysis and immunohistochemistry showed that these cells expressed adult liver cell markers, and had the abilities of glycogen storage and indocyanine green uptake and release. We have developed an efficient method for directing the differentiation of mouse ESCs into cells that exhibit the characteristics of mature hepatocytes. This technique will be useful for research into the molecular mechanisms underlying liver development, and could provide a source of hepatocytes for transplantation therapy and drug screening.


Asunto(s)
Butiratos/farmacología , Diferenciación Celular , Citocinas/farmacología , Células Madre Embrionarias/citología , Hepatocitos/citología , Animales , Butiratos/metabolismo , Linaje de la Célula , Células Cultivadas , Células Madre Embrionarias/metabolismo , Hepatocitos/metabolismo , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA