Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Ecol Lett ; 24(3): 498-508, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33377307

RESUMEN

Forecasts of future forest change are governed by ecosystem sensitivity to climate change, but ecosystem model projections are under-constrained by data at multidecadal and longer timescales. Here, we quantify ecosystem sensitivity to centennial-scale hydroclimate variability, by comparing dendroclimatic and pollen-inferred reconstructions of drought, forest composition and biomass for the last millennium with five ecosystem model simulations. In both observations and models, spatial patterns in ecosystem responses to hydroclimate variability are strongly governed by ecosystem sensitivity rather than climate exposure. Ecosystem sensitivity was higher in models than observations and highest in simpler models. Model-data comparisons suggest that interactions among biodiversity, demography and ecophysiology processes dampen the sensitivity of forest composition and biomass to climate variability and change. Integrating ecosystem models with observations from timescales extending beyond the instrumental record can better understand and forecast the mechanisms regulating forest sensitivity to climate variability in a complex and changing world.


Asunto(s)
Ecosistema , Árboles , Cambio Climático , Sequías , Bosques
2.
Glob Chang Biol ; 27(1): 13-26, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33075199

RESUMEN

In an era of rapid global change, our ability to understand and predict Earth's natural systems is lagging behind our ability to monitor and measure changes in the biosphere. Bottlenecks to informing models with observations have reduced our capacity to fully exploit the growing volume and variety of available data. Here, we take a critical look at the information infrastructure that connects ecosystem modeling and measurement efforts, and propose a roadmap to community cyberinfrastructure development that can reduce the divisions between empirical research and modeling and accelerate the pace of discovery. A new era of data-model integration requires investment in accessible, scalable, and transparent tools that integrate the expertise of the whole community, including both modelers and empiricists. This roadmap focuses on five key opportunities for community tools: the underlying foundations of community cyberinfrastructure; data ingest; calibration of models to data; model-data benchmarking; and data assimilation and ecological forecasting. This community-driven approach is a key to meeting the pressing needs of science and society in the 21st century.


Asunto(s)
Ecosistema , Modelos Teóricos , Predicción
3.
New Phytol ; 215(4): 1370-1386, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28643848

RESUMEN

The maximum photosynthetic carboxylation rate (Vcmax ) is an influential plant trait that has multiple scaling hypotheses, which is a source of uncertainty in predictive understanding of global gross primary production (GPP). Four trait-scaling hypotheses (plant functional type, nutrient limitation, environmental filtering, and plant plasticity) with nine specific implementations were used to predict global Vcmax distributions and their impact on global GPP in the Sheffield Dynamic Global Vegetation Model (SDGVM). Global GPP varied from 108.1 to 128.2 PgC yr-1 , 65% of the range of a recent model intercomparison of global GPP. The variation in GPP propagated through to a 27% coefficient of variation in net biome productivity (NBP). All hypotheses produced global GPP that was highly correlated (r = 0.85-0.91) with three proxies of global GPP. Plant functional type-based nutrient limitation, underpinned by a core SDGVM hypothesis that plant nitrogen (N) status is inversely related to increasing costs of N acquisition with increasing soil carbon, adequately reproduced global GPP distributions. Further improvement could be achieved with accurate representation of water sensitivity and agriculture in SDGVM. Mismatch between environmental filtering (the most data-driven hypothesis) and GPP suggested that greater effort is needed understand Vcmax variation in the field, particularly in northern latitudes.


Asunto(s)
Dióxido de Carbono/metabolismo , Modelos Biológicos , Fotosíntesis , Carácter Cuantitativo Heredable , Ciclo del Carbono , Internacionalidad , Desarrollo de la Planta , Análisis de Componente Principal , Estaciones del Año , Temperatura
4.
Glob Chang Biol ; 23(7): 2755-2767, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28084043

RESUMEN

Ecosystem models show divergent responses of the terrestrial carbon cycle to global change over the next century. Individual model evaluation and multimodel comparisons with data have largely focused on individual processes at subannual to decadal scales. Thus far, data-based evaluations of emergent ecosystem responses to climate and CO2 at multidecadal and centennial timescales have been rare. We compared the sensitivity of net primary productivity (NPP) to temperature, precipitation, and CO2 in ten ecosystem models with the sensitivities found in tree-ring reconstructions of NPP and raw ring-width series at six temperate forest sites. These model-data comparisons were evaluated at three temporal extents to determine whether the rapid, directional changes in temperature and CO2 in the recent past skew our observed responses to multiple drivers of change. All models tested here were more sensitive to low growing season precipitation than tree-ring NPP and ring widths in the past 30 years, although some model precipitation responses were more consistent with tree rings when evaluated over a full century. Similarly, all models had negative or no response to warm-growing season temperatures, while tree-ring data showed consistently positive effects of temperature. Although precipitation responses were least consistent among models, differences among models to CO2 drive divergence and ensemble uncertainty in relative change in NPP over the past century. Changes in forest composition within models had no effect on climate or CO2 sensitivity. Fire in model simulations reduced model sensitivity to climate and CO2 , but only over the course of multiple centuries. Formal evaluation of emergent model behavior at multidecadal and multicentennial timescales is essential to reconciling model projections with observed ecosystem responses to past climate change. Future evaluation should focus on improved representation of disturbance and biomass change as well as the feedbacks with moisture balance and CO2 in individual models.


Asunto(s)
Dióxido de Carbono , Cambio Climático , Ecosistema , Bosques , Clima , América del Norte , Árboles
5.
Oecologia ; 183(4): 939-951, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28116524

RESUMEN

Savanna ecosystems are an integral part of the African landscape and sustain the livelihoods of millions of people. Woody encroachment in savannas is a widespread phenomenon but its causes are widely debated. We review the extensive literature on woody encroachment to help improve understanding of the possible causes and to highlight where and how future scientific efforts to fully understand these causes should be focused. Rainfall is the most important determinant of maximum woody cover across Africa, but fire and herbivory interact to reduce woody cover below the maximum at many locations. We postulate that woody encroachment is most likely driven by CO2 enrichment and propose a two-system conceptual framework, whereby mechanisms of woody encroachment differ depending on whether the savanna is a wet or dry system. In dry savannas, the increased water-use efficiency in plants relaxes precipitation-driven constraints and increases woody growth. In wet savannas, the increase of carbon allocation to tree roots results in faster recovery rates after disturbance and a greater likelihood of reaching sexual maturity. Our proposed framework can be tested using a mixture of experimental and earth observational techniques. At a local level, changes in precipitation, burning regimes or herbivory could be driving woody encroachment, but are unlikely to be the explanation of this continent-wide phenomenon.


Asunto(s)
Pradera , Árboles , Conservación de los Recursos Naturales , Ecosistema , Madera
6.
Ecol Lett ; 16(6): 731-7, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23496289

RESUMEN

Amid a worldwide increase in tree mortality, mountain pine beetles (Dendroctonus ponderosae Hopkins) have led to the death of billions of trees from Mexico to Alaska since 2000. This is predicted to have important carbon, water and energy balance feedbacks on the Earth system. Counter to current projections, we show that on a decadal scale, tree mortality causes no increase in ecosystem respiration from scales of several square metres up to an 84 km(2) valley. Rather, we found comparable declines in both gross primary productivity and respiration suggesting little change in net flux, with a transitory recovery of respiration 6-7 years after mortality associated with increased incorporation of leaf litter C into soil organic matter, followed by further decline in years 8-10. The mechanism of the impact of tree mortality caused by these biotic disturbances is consistent with reduced input rather than increased output of carbon.


Asunto(s)
Carbono/metabolismo , Escarabajos , Ecosistema , Suelo , Árboles , Abies , Altitud , Animales , Dióxido de Carbono/análisis , Colorado , Mortalidad , Pinus , Hojas de la Planta/metabolismo
7.
Ecol Lett ; 16 Suppl 1: 39-47, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23279784

RESUMEN

Climate change is leading to the development of land-based mitigation and adaptation strategies that are likely to have substantial impacts on global biodiversity. Of these, approaches to maintain carbon within existing natural ecosystems could have particularly large benefits for biodiversity. However, the geographical distributions of terrestrial carbon stocks and biodiversity differ. Using conservation planning analyses for the New World and Britain, we conclude that a carbon-only strategy would not be effective at conserving biodiversity, as have previous studies. Nonetheless, we find that a combined carbon-biodiversity strategy could simultaneously protect 90% of carbon stocks (relative to a carbon-only conservation strategy) and > 90% of the biodiversity (relative to a biodiversity-only strategy) in both regions. This combined approach encapsulates the principle of complementarity, whereby locations that contain different sets of species are prioritised, and hence disproportionately safeguard localised species that are not protected effectively by carbon-only strategies. It is efficient because localised species are concentrated into small parts of the terrestrial land surface, whereas carbon is somewhat more evenly distributed; and carbon stocks protected in one location are equivalent to those protected elsewhere. Efficient compromises can only be achieved when biodiversity and carbon are incorporated together within a spatial planning process.


Asunto(s)
Biodiversidad , Conservación de los Recursos Naturales , California , Carbono , Ecosistema , Inglaterra , Suelo
8.
Sci Total Environ ; 766: 142613, 2021 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-33097258

RESUMEN

Estimates of peatland carbon fluxes based on remote sensing data are a useful addition to monitoring methods in these remote and precious ecosystems, but there are questions as to whether large-scale estimates are reliable given the small-scale heterogeneity of many peatlands. Our objective was to consider the reliability of models based on Earth Observations for estimating ecosystem photosynthesis at different scales using the Forsinard Flows RSPB reserve in Northern Scotland as our study site. Three sites across the reserve were monitored during the growing season of 2017. One site is near-natural blanket bog, and the other two are at different stages of the restoration process after removal of commercial conifer forestry. At each site we measured small (flux chamber) and landscape scale (eddy covariance) CO2 fluxes, small scale spectral data using a handheld spectrometer, and obtained corresponding satellite data from MODIS. The variables influencing GPP at small scale, including microforms and dominant vegetation species, were assessed using exploratory factor analysis. A GPP model using land surface temperature and a measure of greenness from remote sensing data was tested and compared to chamber and eddy covariance CO2 fluxes; this model returned good results at all scales (Pearson's correlations of 0.57 to 0.71 at small scale, 0.76 to 0.86 at large scale). We found that the effect of microtopography on GPP fluxes at the study sites was spatially and temporally inconsistent, although connected to water content and vegetation species. The GPP fluxes measured using EC were larger than those using chambers at all sites, and the reliability of the TG model at different scales was dependent on the measurement methods used for calibration and validation. This suggests that GPP measurements from remote sensing are robust at all scales, but that the methods used for calibration and validation will impact accuracy.

9.
PLoS One ; 10(6): e0128935, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26067835

RESUMEN

Upscaling ecological information to larger scales in space and downscaling remote sensing observations or model simulations to finer scales remain grand challenges in Earth system science. Downscaling often involves inferring subgrid information from coarse-scale data, and such ill-posed problems are classically addressed using regularization. Here, we apply two-dimensional Tikhonov Regularization (2DTR) to simulate subgrid surface patterns for ecological applications. Specifically, we test the ability of 2DTR to simulate the spatial statistics of high-resolution (4 m) remote sensing observations of the normalized difference vegetation index (NDVI) in a tundra landscape. We find that the 2DTR approach as applied here can capture the major mode of spatial variability of the high-resolution information, but not multiple modes of spatial variability, and that the Lagrange multiplier (γ) used to impose the condition of smoothness across space is related to the range of the experimental semivariogram. We used observed and 2DTR-simulated maps of NDVI to estimate landscape-level leaf area index (LAI) and gross primary productivity (GPP). NDVI maps simulated using a γ value that approximates the range of observed NDVI result in a landscape-level GPP estimate that differs by ca 2% from those created using observed NDVI. Following findings that GPP per unit LAI is lower near vegetation patch edges, we simulated vegetation patch edges using multiple approaches and found that simulated GPP declined by up to 12% as a result. 2DTR can generate random landscapes rapidly and can be applied to disaggregate ecological information and compare of spatial observations against simulated landscapes.


Asunto(s)
Ecosistema , Modelos Biológicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA