Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 139
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Brain ; 147(3): 1043-1056, 2024 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-37804316

RESUMEN

AFG3L2 is a mitochondrial protease exerting protein quality control in the inner mitochondrial membrane. Heterozygous AFG3L2 mutations cause spinocerebellar ataxia type 28 (SCA28) or dominant optic atrophy type 12 (DOA12), while biallelic AFG3L2 mutations result in the rare and severe spastic ataxia type 5 (SPAX5). The clinical spectrum of SPAX5 includes childhood-onset cerebellar ataxia, spasticity, dystonia and myoclonic epilepsy. We previously reported that the absence or mutation of AFG3L2 leads to the accumulation of mitochondria-encoded proteins, causing the overactivation of the stress-sensitive protease OMA1, which over-processes OPA1, leading to mitochondrial fragmentation. Recently, OMA1 has been identified as the pivotal player communicating mitochondrial stress to the cytosol via a pathway involving the inner mitochondrial membrane protein DELE1 and the cytosolic kinase HRI, thus eliciting the integrated stress response. In general, the integrated stress response reduces global protein synthesis and drives the expression of cytoprotective genes that allow cells to endure proteotoxic stress. However, the relevance of the OMA1-DELE1-HRI axis in vivo, and especially in a human CNS disease context, has been poorly documented thus far. In this work, we demonstrated that mitochondrial proteotoxicity in the absence/mutation of AFG3L2 activates the OMA1-DELE1-HRI pathway eliciting the integrated stress response. We found enhanced OMA1-dependent processing of DELE1 upon depletion of AFG3L2. Also, in both skin fibroblasts from SPAX5 patients (including a novel case) and in the cerebellum of Afg3l2-/- mice we detected increased phosphorylation of the α-subunit of the eukaryotic translation initiation factor 2 (eIF2α), increased levels of ATF4 and strong upregulation of its downstream targets (Chop, Chac1, Ppp1r15a and Ffg21). Silencing of DELE1 or HRI in SPAX5 fibroblasts (where OMA1 is overactivated at basal state) reduces eIF2α phosphorylation and affects cell growth. In agreement, pharmacological potentiation of integrated stress response via Sephin-1, a drug that selectively inhibits the stress-induced eIF2alpha phosphatase GADD34 (encoded by Ppp1r15a), improved cell growth of SPAX5 fibroblasts and cell survival and dendritic arborization ex vivo in primary Afg3l2-/- Purkinje neurons. Notably, Sephin-1 treatment in vivo extended the lifespan of Afg3l2-/- mice, improved Purkinje neuron morphology, mitochondrial ultrastructure and respiratory capacity. These data indicate that activation of the OMA1-DELE1-HRI pathway is protective in the context of SPAX5. Pharmacological tuning of the integrated stress response may represent a future therapeutic strategy for SPAX5 and other cerebellar ataxias caused by impaired mitochondrial proteostasis.


Asunto(s)
Discapacidad Intelectual , Atrofia Óptica , Ataxias Espinocerebelosas , Humanos , Animales , Ratones , Niño , Ataxias Espinocerebelosas/genética , Espasticidad Muscular , Péptido Hidrolasas , ATPasas Asociadas con Actividades Celulares Diversas/genética , Proteasas ATP-Dependientes/genética , Proteínas Mitocondriales , Metaloproteasas
2.
Eur J Neurol ; 31(8): e16316, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38716751

RESUMEN

BACKGROUND AND PURPOSE: The use of multiple tests, including spirometry, arterial blood gas (ABG) analysis and overnight oximetry (OvOx), is highly recommended to monitor the respiratory function of patients with motor neuron disease (MND). In this study, we propose a composite score to simplify the respiratory management of MND patients and better stratify their prognosis. MATERIALS AND METHODS: We screened the clinical charts of 471 non-ventilated MND patients referred to the Neuro-rehabilitation Unit of the San Raffaele Scientific Institute of Milan (January 2001-December 2019), collecting spirometric, ABG and OvOx parameters. To evaluate the prognostic role of each measurement, univariate Cox regression for death/tracheostomy was performed, and the variables associated with survival were selected to design a scoring system. Univariate and multivariate Cox regression analyses were then carried out to evaluate the prognostic role of the score. Finally, results were replicated in an independent cohort from the Turin ALS Center. RESULTS: The study population included 450 patients. Six measurements were found to be significantly associated with survival and were selected to design a scoring system (maximum score = 8 points). Kaplan-Meier analysis showed significant stratification of survival and time to non-invasive mechanical ventilation adaptation according to score values, and multivariate analysis confirmed the independent effect of the respiratory score on survival of each cohort. CONCLUSION: Forced vital capacity, ABG and OvOx parameters provide complementary information for the respiratory management and prognosis of MND patients and the combination of these parameters into a single score might help neurologists predict prognosis and guide decisions on the timing of the implementation of different diagnostic or therapeutic approaches.


Asunto(s)
Análisis de los Gases de la Sangre , Enfermedad de la Neurona Motora , Oximetría , Espirometría , Humanos , Femenino , Masculino , Persona de Mediana Edad , Anciano , Análisis de los Gases de la Sangre/métodos , Oximetría/métodos , Enfermedad de la Neurona Motora/sangre , Enfermedad de la Neurona Motora/fisiopatología , Enfermedad de la Neurona Motora/diagnóstico , Pronóstico , Estudios Retrospectivos , Adulto
3.
Proc Natl Acad Sci U S A ; 118(27)2021 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-34183414

RESUMEN

Demyelination is a key pathogenic feature of multiple sclerosis (MS). Here, we evaluated the astrocyte contribution to myelin loss and focused on the neurotrophin receptor TrkB, whose up-regulation on the astrocyte finely demarcated chronic demyelinated areas in MS and was paralleled by neurotrophin loss. Mice lacking astrocyte TrkB were resistant to demyelination induced by autoimmune or toxic insults, demonstrating that TrkB signaling in astrocytes fostered oligodendrocyte damage. In vitro and ex vivo approaches highlighted that astrocyte TrkB supported scar formation and glia proliferation even in the absence of neurotrophin binding, indicating TrkB transactivation in response to inflammatory or toxic mediators. Notably, our neuropathological studies demonstrated copper dysregulation in MS and model lesions and TrkB-dependent expression of copper transporter (CTR1) on glia cells during neuroinflammation. In vitro experiments evidenced that TrkB was critical for the generation of glial intracellular calcium flux and CTR1 up-regulation induced by stimuli distinct from neurotrophins. These events led to copper uptake and release by the astrocyte, and in turn resulted in oligodendrocyte loss. Collectively, these data demonstrate a pathogenic demyelination mechanism via the astrocyte release of copper and open up the possibility of restoring copper homeostasis in the white matter as a therapeutic target in MS.


Asunto(s)
Astrocitos/metabolismo , Astrocitos/patología , Cobre/metabolismo , Esclerosis Múltiple/metabolismo , Animales , Transporte Biológico , Enfermedad Crónica , Cicatriz/patología , Cuprizona , Modelos Animales de Enfermedad , Encefalomielitis Autoinmune Experimental , Humanos , Inflamación/patología , Ligandos , Proteínas de Transporte de Membrana/metabolismo , Ratones Noqueados , Vaina de Mielina/metabolismo , Factores de Crecimiento Nervioso/metabolismo , Receptor trkB/metabolismo , Regulación hacia Arriba , Sustancia Blanca/patología
4.
J Neurosci ; 42(12): 2433-2447, 2022 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-35110388

RESUMEN

We previously reported that a-disintegrin and metalloproteinase (ADAM)17 is a key protease regulating myelin formation. We now describe a role for ADAM17 during the Wallerian degeneration (WD) process. Unexpectedly, we observed that glial ADAM17, by regulating p75NTR processing, cell autonomously promotes remyelination, while neuronal ADAM17 is dispensable. Accordingly, p75NTR abnormally accumulates specifically when ADAM17 is maximally expressed leading to a downregulation of tissue plasminogen activator (tPA) expression, excessive fibrin accumulation over time, and delayed remyelination. Mutant mice also present impaired macrophage recruitment and defective nerve conduction velocity (NCV). Thus, ADAM17 expressed in Schwann cells, controls the whole WD process, and its absence hampers effective nerve repair. Collectively, we describe a previously uncharacterized role for glial ADAM17 during nerve regeneration. Based on the results of our study, we posit that, unlike development, glial ADAM17 promotes remyelination through the regulation of p75NTR-mediated fibrinolysis.SIGNIFICANCE STATEMENT The α-secretase a-disintegrin and metalloproteinase (ADAM)17, although relevant for developmental PNS myelination, has never been investigated in Wallerian degeneration (WD). We now unravel a new mechanism of action for this protease and show that ADAM17 cleaves p75NTR, regulates fibrin clearance, and eventually fine-tunes remyelination. The results presented in this study provide important insights into the complex regulation of remyelination following nerve injury, identifying in ADAM17 and p75NTR a new signaling axis implicated in these events. Modulation of this pathway could have important implications in promoting nerve remyelination, an often-inefficient process, with the aim of restoring a functional axo-glial unit.


Asunto(s)
Proteína ADAM17 , Receptor de Factor de Crecimiento Nervioso , Remielinización , Proteína ADAM17/metabolismo , Animales , Desintegrinas , Fibrina , Fibrinólisis , Ratones , Receptor de Factor de Crecimiento Nervioso/metabolismo , Activador de Tejido Plasminógeno , Degeneración Walleriana
5.
Brain ; 145(1): 276-284, 2022 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-35076694

RESUMEN

Phosphorylated TDP-43 (pTDP-43) aggregates in the cytoplasm of motor neurons and neuroglia in the brain are one of the pathological hallmarks of amyotrophic lateral sclerosis. Although the axons exceed the total volume of motor neuron soma by several orders of magnitude, systematic studies investigating the presence and distribution of pTDP-43 aggregates within motor nerves are still lacking. The aim of this study is to define the TDP-43/pTDP-43 pathology in diagnostic motor nerve biopsies performed on a large cohort of patients presenting with a lower motor neuron syndrome and to assess whether this might be a discriminating tissue biomarker for amyotrophic lateral sclerosis and non-amyotrophic lateral sclerosis cases. We retrospectively evaluated 102 lower motor neuron syndrome patients referred to our centre for a diagnostic motor nerve biopsy. Histopathological criteria of motor neuron disease and motor neuropathy were applied by two independent evaluators, who were blind to clinical data. TDP-43 and pTDP-43 were evaluated by immunohistochemistry, and results compared to final clinical diagnosis. We detected significant differences between amyotrophic lateral sclerosis and non-amyotrophic lateral sclerosis cases in pTDP-43 expression in myelinated fibres: axonal accumulation was detected in 98.2% of patients with amyotrophic lateral sclerosis versus 30.4% of non-amyotrophic lateral sclerosis samples (P < 0.0001), while concomitant positive staining in Schwan cell cytoplasm was found in 70.2% of patients with amyotrophic lateral sclerosis versus 17.4% of patients who did not have amyotrophic lateral sclerosis (P < 0.001). Importantly, we were also able to detect pTDP-43 aggregates in amyotrophic lateral sclerosis cases displaying normal features at standard histopathological analysis. Our findings demonstrated that a specific pTDP-43 signature is present in the peripheral nervous system of patients with amyotrophic lateral sclerosis, and could be exploited as a specific, accessible tissue biomarker. The detection of pTDP-43 aggregates within motor nerves of living patients with amyotrophic lateral sclerosis, occurring before axonal degeneration, suggests that this is an early event that may contribute to amyotrophic lateral sclerosis pathogenesis.


Asunto(s)
Esclerosis Amiotrófica Lateral , Proteínas de Unión al ADN/metabolismo , Esclerosis Amiotrófica Lateral/metabolismo , Humanos , Neuronas Motoras/metabolismo , Sistema Nervioso Periférico , Estudios Retrospectivos
6.
Int J Mol Sci ; 24(15)2023 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-37569475

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease with variable phenotypic expressions which has been associated with autonomic dysfunction. The cardiovascular system seems to be affected especially in the context of bulbar involvement. We describe four new cases of Tako-Tsubo syndrome (TTS) in ALS patients with an appraisal of the literature. We present a late-stage ALS patient with prominent bulbar involvement that presented TTS during hospitalization. We then retrospectively identify three additional ALS-TTS cases reporting relevant clinical findings. TTS cardiomyopathy has been observed in different acute neurological conditions, and the co-occurrence of ALS and TTS has already been reported. Cardiovascular autonomic dysfunctions have been described in ALS, especially in the context of an advanced diseases and with bulbar involvement. Noradrenergic hyperfunction linked to sympathetic denervation and ventilatory deficits coupled in different instances with a trigger event could play a synergistic role in the development of TTS in ALS. Sympathetic hyperfunctioning and ventilatory deficits in conjunction with cardiac autonomic nerves impairment may play a role in the development of TTS in a context of ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral , Enfermedades Neurodegenerativas , Disautonomías Primarias , Cardiomiopatía de Takotsubo , Humanos , Esclerosis Amiotrófica Lateral/complicaciones , Cardiomiopatía de Takotsubo/complicaciones , Enfermedades Neurodegenerativas/complicaciones , Estudios Retrospectivos
7.
Int J Mol Sci ; 24(5)2023 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-36902041

RESUMEN

Amyotrophic lateral sclerosis (ALS) is characterized by the progressive, irreversible loss of upper and lower motor neurons (UMNs, LMNs). MN axonal dysfunctions are emerging as relevant pathogenic events since the early ALS stages. However, the exact molecular mechanisms leading to MN axon degeneration in ALS still need to be clarified. MicroRNA (miRNA) dysregulation plays a critical role in the pathogenesis of neuromuscular diseases. These molecules represent promising biomarkers for these conditions since their expression in body fluids consistently reflects distinct pathophysiological states. Mir-146a has been reported to modulate the expression of the NFL gene, encoding the light chain of the neurofilament (NFL) protein, a recognized biomarker for ALS. Here, we analyzed miR-146a and Nfl expression in the sciatic nerve of G93A-SOD1 ALS mice during disease progression. The miRNA was also analyzed in the serum of affected mice and human patients, the last stratified relying on the predominant UMN or LMN clinical signs. We revealed a significant miR-146a increase and Nfl expression decrease in G93A-SOD1 peripheral nerve. In the serum of both ALS mice and human patients, the miRNA levels were reduced, discriminating UMN-predominant patients from the LMN ones. Our findings suggest a miR-146a contribution to peripheral axon impairment and its potential role as a diagnostic and prognostic biomarker for ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral , MicroARNs , Degeneración Nerviosa , Animales , Humanos , Ratones , Esclerosis Amiotrófica Lateral/diagnóstico , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Biomarcadores/sangre , Biomarcadores/metabolismo , Modelos Animales de Enfermedad , Ratones Transgénicos , MicroARNs/sangre , MicroARNs/genética , MicroARNs/metabolismo , Degeneración Nerviosa/diagnóstico , Degeneración Nerviosa/genética , Degeneración Nerviosa/metabolismo , Nervios Periféricos/patología , Superóxido Dismutasa-1/genética , Axones/patología , Proteínas de Neurofilamentos , Diagnóstico Precoz , Progresión de la Enfermedad
8.
Hum Mol Genet ; 29(2): 177-188, 2020 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-31868880

RESUMEN

Mitochondria undergo continuous cycles of fusion and fission in response to physiopathological stimuli. The key player in mitochondrial fission is dynamin-related protein 1 (DRP1), a cytosolic protein encoded by dynamin 1-like (DNM1L) gene, which relocalizes to the outer mitochondrial membrane, where it assembles, oligomerizes and drives mitochondrial division upon guanosine-5'-triphosphate (GTP) hydrolysis. Few DRP1 mutations have been described so far, with patients showing complex and variable phenotype ranging from early death to encephalopathy and/or optic atrophy. The disease is the consequence of defective mitochondrial fission due to faulty DRP1 function. However, the underlying molecular mechanisms and the functional consequences at mitochondrial and cellular level remain elusive. Here we report on a 5-year-old girl presenting psychomotor developmental delay, global hypotonia and severe ataxia due to axonal sensory neuropathy harboring a novel de novo heterozygous missense mutation in the GTPase domain of DRP1 (NM_012062.3:c.436G>A, NP_036192.2: p.D146N variant in DNM1L). Patient's fibroblasts show hyperfused/balloon-like giant mitochondria, highlighting the importance of D146 residue for DRP1 function. This dramatic mitochondrial rearrangement phenocopies what observed overexpressing DRP1-K38A, a well-known experimental dominant negative version of DRP1. In addition, we demonstrated that p.D146N mutation has great impact on peroxisomal shape and function. The p.D146N mutation compromises the GTPase activity without perturbing DRP1 recruitment or assembly, causing decreased mitochondrial and peroxisomal turnover. In conclusion, our findings highlight the importance of sensory neuropathy in the clinical spectrum of DRP1 variants and, for the first time, the impact of DRP1 mutations on mitochondrial turnover and peroxisomal functionality.


Asunto(s)
Dinaminas/genética , Fibroblastos/ultraestructura , Mitocondrias/genética , Mitocondrias/ultraestructura , Dinámicas Mitocondriales/genética , Enfermedades del Sistema Nervioso Periférico/genética , Autofagia/genética , Preescolar , Dinaminas/metabolismo , Femenino , Fibroblastos/citología , Fibroblastos/metabolismo , Heterocigoto , Humanos , Mitocondrias/metabolismo , Mitocondrias/patología , Mutación , Linaje , Enfermedades del Sistema Nervioso Periférico/enzimología , Enfermedades del Sistema Nervioso Periférico/metabolismo , Enfermedades del Sistema Nervioso Periférico/patología , Peroxisomas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Secuenciación del Exoma
9.
Eur J Neurol ; 29(7): 1930-1939, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35263489

RESUMEN

BACKGROUND AND PURPOSE: This study was undertaken to determine the diagnostic and prognostic value of a panel of serum biomarkers and to correlate their concentrations with several clinical parameters in a large cohort of patients with amyotrophic lateral sclerosis (ALS). METHODS: One hundred forty-three consecutive patients with ALS and a control cohort consisting of 70 patients with other neurodegenerative disorders (DEG), 70 patients with ALS mimic disorders (ALSmd), and 45 healthy controls (HC) were included. Serum neurofilament light chain (NfL), ubiquitin carboxyl-terminal hydrolase isozyme L1 (UCHL1), glial fibrillary acidic protein (GFAP), and total tau protein levels were measured using ultrasensitive single molecule array. RESULTS: NfL correlated with disease progression rate (p < 0.001) and with the measures of upper motor neuron burden (p < 0.001). NfL was higher in the ALS patients with classic and pyramidal phenotype. GFAP was raised in ALS with cognitive-behavioral impairment compared with ALS with normal cognition. NfL displayed the best diagnostic performance in discriminating ALS from HC (area under the curve [AUC] = 0.990), DEG (AUC = 0.946), and ALSmd (AUC = 0.850). UCHL1 performed well in distinguishing ALS from HC (AUC = 0.761), whereas it was not helpful in differentiating ALS from DEG and ALSmd. In multivariate analysis, NfL (p < 0.001) and UCHL1 (p = 0.038) were independent prognostic factors. Survival analysis combining NfL and UCHL1 effectively stratified patients with lower NfL levels (p < 0.001). CONCLUSIONS: NfL is a useful biomarker for the diagnosis of ALS and the strongest predictor of survival. UCHL1 is an independent prognostic factor helpful in stratifying survival in patients with low NfL levels, likely to have slowly progressive disease. GFAP reflects extramotor involvement, namely cognitive impairment or frontotemporal dementia.


Asunto(s)
Esclerosis Amiotrófica Lateral , Demencia Frontotemporal , Esclerosis Amiotrófica Lateral/diagnóstico , Biomarcadores , Estudios de Cohortes , Humanos , Proteínas de Neurofilamentos , Pronóstico
10.
Nano Lett ; 21(14): 6179-6187, 2021 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-34251835

RESUMEN

Advanced sensing tools, detecting extremely low concentrations of circulating biomarkers, can open unexplored routes toward early diagnostics and diseases progression monitoring. Here, we demonstrate the sensing capabilities of a chip-based metamaterial, combining 3D chiral geometry with a functional core-shell nanoarchitecture. The chiral metamaterial provides a circular polarization-dependent optical response, allowing analysis in a complex environment without significant background interferences. The functional nanoarchitecture, based on the conformal coating with a polymer shell, modifies the chiral metamaterial near- and far-field optical response because of the energy transfer between dielectric shell polarization charges and plasmonic core free electrons, leading to efficient interaction with biomolecules. The system sensitivity slope is 27 nm/pM, in the detection of TAR DNA-binding protein 43, clinically relevant for neurodegenerative diseases. Measurements were performed in spiked solution and in human serum with concentrations from 1 pM down to 10 fM, which is a range not accessible with common immunological assays, opening new perspectives for next-generation biomedical systems.


Asunto(s)
Dicroismo Circular , Humanos
11.
Hum Mol Genet ; 28(1): 124-132, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30239779

RESUMEN

Protein zero (P0) is the major structural protein in peripheral myelin, and mutations in the Myelin Protein Zero (Mpz) gene produce wide-ranging hereditary neuropathy phenotypes. To gain insight in the mechanisms underlying a particularly severe form, congenital hypomyelination (CH), we targeted mouse Mpz to encode P0Q215X, a nonsense mutation associated with the disease, that we show escapes nonsense mediated decay and is expressed in CH patient nerves. The knock-in mice express low levels of the resulting truncated protein, producing a milder phenotype when compared to patients, allowing to dissect the subtle pathogenic mechanisms occurring in otherwise very compromised peripheral myelin. We find that P0Q215X does not elicit an unfolded protein response, which is a key mechanism for other pathogenic MPZ mutations, but is instead in part aberrantly trafficked to non-myelin plasma membranes and induces defects in radial sorting of axons by Schwann cells. We show that the loss of the C-terminal Tyr-Ala-Met-Leu motif is responsible for P0 mislocalization, as its addition is able to restore correct P0Q215X trafficking in vitro. Lastly, we show that P0Q215X acts through dose-dependent gain of abnormal function, as wild-type P0 is unable to rescue the hypomyelination phenotype. Collectively, these data indicate that alterations at the premyelinating stage, linked to altered targeting of P0, may be responsible for CH, and that different types of gain of abnormal function produce the diverse neuropathy phenotypes associated with MPZ, supporting future allele-specific therapeutic silencing strategies.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth/genética , Proteína P0 de la Mielina/genética , Proteína P0 de la Mielina/fisiología , Animales , Axones/metabolismo , Membrana Celular/fisiología , Codón sin Sentido , Enfermedades Desmielinizantes/genética , Femenino , Técnicas de Sustitución del Gen , Humanos , Masculino , Ratones Endogámicos BALB C , Mutación , Fenotipo , Transporte de Proteínas/genética , Células de Schwann/metabolismo
12.
J Peripher Nerv Syst ; 26 Suppl 2: S11-S20, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34768313

RESUMEN

Normal nerve architecture is basic to a complete understanding of nerve pathology. Here, normal components of the nerve are illustrated, including myelinated and non-myelinated nerve fibres, stromal elements, and vascular components. These are relevant because the differential diagnosis of neuropathy depends on the pathological processes affecting axon, myelin, interstitial space, and blood vessels. Thus, we present a description of the general pathological characteristics for the diagnosis of peripheral nerve disorders.


Asunto(s)
Enfermedades del Sistema Nervioso Periférico , Axones/patología , Humanos , Vaina de Mielina/patología , Nervios Periféricos/patología , Enfermedades del Sistema Nervioso Periférico/diagnóstico , Enfermedades del Sistema Nervioso Periférico/patología
13.
J Peripher Nerv Syst ; 26 Suppl 2: S61-S68, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34498774

RESUMEN

To understand the pathology of axonal degeneration and demyelination in peripheral neuropathy, histological investigations in different animal models that mimic some aspects of human peripheral neuropathy are needed. Thus, in the following section of this special issue, the main pathological features of experimental autoimmune neuritis, animal models of chemotherapy-induced peripheral neuropath and of human inherited peripheral neuropathies (IPNs) will be illustrated. When possible, micrographs from animal models and selected human biopsy will be shown side by side.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth , Animales , Enfermedad de Charcot-Marie-Tooth/patología , Humanos , Modelos Animales
14.
J Peripher Nerv Syst ; 26(2): 177-183, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33960567

RESUMEN

Mutations in Myelin Protein Zero (MPZ) cause CMT1B, the second leading cause of CMT1. Many of the >200 mutations cause neuropathy through a toxic gain of function by the mutant protein such as ER retention, activation of the Unfolded Protein Response (UPR) or disruption of myelin compaction. While there is extensive literature on the loss of function consequences of MPZ in heterozygous Mpz +/- null mice, there is little known of the consequences of MPZ haploinsufficiency in humans. We identified six patients from different families with p.Tyr68Ter or p.Asp104fs heterozygous mutations of MPZ that are predicted to cause a premature termination and nonsense mediated decay of the mutant allele. Five patients were evaluated in Milan and one in Iowa City; all should be haploinsufficient for MPZ. Patients were evaluated clinically and by electrophysiology. Sensory ataxia dominated the clinical presentation with only mild weakness present in five of the six patients. Symptoms presented in adulthood in all patients and only one individual had a CMTNSv2 >5. Deep tendon reflexes were absent in all patients. Patients with likely MPZ loss of function due to mutations that cause haplodeficiency in MPZ have a mild, predominantly large fiber sensory neuropathy that serves as a human equivalent to the neuropathy observed in heterozygous Mpz null mice. Successful therapeutic approaches in treating Mpz deficient mice may be candidates for trials in these and similar patients.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth , Proteína P0 de la Mielina/genética , Animales , Enfermedad de Charcot-Marie-Tooth/genética , Fenómenos Electrofisiológicos , Humanos , Ratones , Mutación/genética , Vaina de Mielina
15.
J Neurosci ; 39(28): 5481-5492, 2019 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-31138656

RESUMEN

Myelin loss occurring in demyelinating diseases, including multiple sclerosis, is the leading cause of long-lasting neurological disability in adults. While endogenous remyelination, driven by resident oligodendrocyte precursor cells (OPCs), might partially compensate myelin loss in the early phases of demyelinating disorders, this spontaneous reparative potential fails at later stages. To investigate the cellular mechanisms sustaining endogenous remyelination in demyelinating disorders, we focused our attention on endogenous neural precursor cells (eNPCs) located within the subventricular zone (SVZ) since this latter area is considered one of the primary sources of new OPCs in the adult forebrain. First, we fate mapped SVZ-eNPCs in cuprizone-induced demyelination and found that SVZ endogenous neural stem/precursor cells are recruited during the remyelination phase to the corpus callosum (CC) and are capable of forming new oligodendrocytes. When we ablated SVZ-derived eNPCs during cuprizone-induced demyelination in female mice, the animals displayed reduced numbers of oligodendrocytes within the lesioned CC. Although this reduction in oligodendrocytes did not impact the ensuing remyelination, eNPC-ablated mice experienced increased axonal loss. Our results indicate that, in toxic models of demyelination, SVZ-derived eNPCs contribute to support axonal survival.SIGNIFICANCE STATEMENT One of the significant challenges in MS research is to understand the detrimental mechanisms leading to the failure of CNS tissue regeneration during disease progression. One possible explanation is the inability of recruited oligodendrocyte precursor cells (OPCs) to complete remyelination and to sustain axonal survival. The contribution of endogenous neural precursor cells (eNPCs) located in the subventricular zone (SVZ) to generate new OPCs in the lesion site has been debated. Using transgenic mice to fate map and to selectively kill SVZ-derived eNPCs in the cuprizone demyelination model, we observed migration of SVZ-eNPCs after injury and their contribution to oligodendrogenesis and axonal survival. We found that eNPCs are dispensable for remyelination but protect partially from increased axonal loss.


Asunto(s)
Cuerpo Calloso/metabolismo , Enfermedades Desmielinizantes/metabolismo , Ventrículos Laterales/citología , Vaina de Mielina/metabolismo , Células-Madre Neurales/citología , Animales , Movimiento Celular , Cuerpo Calloso/efectos de los fármacos , Cuerpo Calloso/patología , Cuprizona/toxicidad , Enfermedades Desmielinizantes/etiología , Enfermedades Desmielinizantes/patología , Femenino , Ratones , Ratones Endogámicos C57BL , Células-Madre Neurales/metabolismo , Células-Madre Neurales/fisiología , Oligodendroglía/citología , Oligodendroglía/metabolismo
16.
Glia ; 68(6): 1148-1164, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31851405

RESUMEN

Myelin, one of the most important adaptations of vertebrates, is essential to ensure efficient propagation of the electric impulse in the nervous system and to maintain neuronal integrity. In the central nervous system (CNS), the development of oligodendrocytes and the process of myelination are regulated by the coordinated action of several positive and negative cell-extrinsic factors. We and others previously showed that secretases regulate the activity of proteins essential for myelination. We now report that the neuronal α-secretase ADAM17 controls oligodendrocyte differentiation and myelin formation in the CNS. Ablation of Adam17 in neurons impairs in vivo and in vitro oligodendrocyte differentiation, delays myelin formation throughout development and results in hypomyelination. Furthermore, we show that this developmental defect is, in part, the result of altered Notch/Jagged 1 signaling. Surprisingly, in vivo conditional loss of Adam17 in immature oligodendrocytes has no effect on myelin formation. Collectively, our data indicate that the neuronal α-secretase ADAM17 is required for proper CNS myelination. Further, our studies confirm that secretases are important post-translational regulators of myelination although the mechanisms controlling CNS and peripheral nervous system (PNS) myelination are distinct.


Asunto(s)
Proteína ADAM17/metabolismo , Sistema Nervioso Central/metabolismo , Vaina de Mielina/metabolismo , Neuronas/metabolismo , Oligodendroglía/metabolismo , 2',3'-Nucleótido Cíclico 3'-Fosfodiesterasa/metabolismo , Proteína ADAM17/genética , Animales , Diferenciación Celular/fisiología , Sistema Nervioso Central/citología , Ratones Transgénicos , Neurogénesis/fisiología
17.
Glia ; 68(1): 95-110, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31479164

RESUMEN

We have previously reported that prostaglandin D2 Synthase (L-PGDS) participates in peripheral nervous system (PNS) myelination during development. We now describe the role of L-PGDS in the resolution of PNS injury, similarly to other members of the prostaglandin synthase family, which are important for Wallerian degeneration (WD) and axonal regeneration. Our analyses show that L-PGDS expression is modulated after injury in both sciatic nerves and dorsal root ganglia neurons, indicating that it might play a role in the WD process. Accordingly, our data reveals that L-PGDS regulates macrophages phagocytic activity through a non-cell autonomous mechanism, allowing myelin debris clearance and favoring axonal regeneration and remyelination. In addition, L-PGDS also appear to control macrophages accumulation in injured nerves, possibly by regulating the blood-nerve barrier permeability and SOX2 expression levels in Schwann cells. Collectively, our results suggest that L-PGDS has multiple functions during nerve regeneration and remyelination. Based on the results of this study, we posit that L-PGDS acts as an anti-inflammatory agent in the late phases of WD, and cooperates in the resolution of the inflammatory response. Thus, pharmacological activation of the L-PGDS pathway might prove beneficial in resolving peripheral nerve injury.


Asunto(s)
Oxidorreductasas Intramoleculares/biosíntesis , Lipocalinas/biosíntesis , Activación de Macrófagos/fisiología , Regeneración Nerviosa/fisiología , Neuropatía Ciática/enzimología , Animales , Femenino , Oxidorreductasas Intramoleculares/genética , Lipocalinas/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Traumatismos de los Nervios Periféricos/genética , Traumatismos de los Nervios Periféricos/metabolismo , Traumatismos de los Nervios Periféricos/patología , Neuropatía Ciática/genética , Neuropatía Ciática/patología
18.
Development ; 144(17): 3114-3125, 2017 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-28743796

RESUMEN

Correct myelination is crucial for the function of the peripheral nervous system. Both positive and negative regulators within the axon and Schwann cell function to ensure the correct onset and progression of myelination during both development and following peripheral nerve injury and repair. The Sox2 transcription factor is well known for its roles in the development and maintenance of progenitor and stem cell populations, but has also been proposed in vitro as a negative regulator of myelination in Schwann cells. We wished to test fully whether Sox2 regulates myelination in vivo and show here that, in mice, sustained Sox2 expression in vivo blocks myelination in the peripheral nerves and maintains Schwann cells in a proliferative non-differentiated state, which is also associated with increased inflammation within the nerve. The plasticity of Schwann cells allows them to re-myelinate regenerated axons following injury and we show that re-myelination is also blocked by Sox2 expression in Schwann cells. These findings identify Sox2 as a physiological regulator of Schwann cell myelination in vivo and its potential to play a role in disorders of myelination in the peripheral nervous system.


Asunto(s)
Macrófagos/metabolismo , Vaina de Mielina/metabolismo , Nervios Periféricos/metabolismo , Factores de Transcripción SOXB1/metabolismo , Células de Schwann/metabolismo , Animales , Biomarcadores/metabolismo , Cadherinas/metabolismo , Proliferación Celular , Proteína 2 de la Respuesta de Crecimiento Precoz/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Ratones Transgénicos , Actividad Motora , Conducción Nerviosa , Traumatismos de los Nervios Periféricos/metabolismo , Traumatismos de los Nervios Periféricos/patología , Nervios Periféricos/patología , Nervios Periféricos/ultraestructura , Proteínas Proto-Oncogénicas c-jun/metabolismo , Ratas , Recuperación de la Función , Células de Schwann/patología , Transgenes , beta Catenina/metabolismo
19.
J Synchrotron Radiat ; 27(Pt 4): 1042-1048, 2020 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-33566014

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder affecting motor neurons. Pre-clinical studies drive the development of animal models that well mimic ALS disorder and enable both the dissection of disease processes and an early assessment of therapy efficacy. A comprehensive knowledge of neuronal and vascular lesions in the brain and spinal cord is an essential factor to understand the development of the disease. Spatial resolution and bidimensional imaging are important drawbacks limiting current neuroimaging tools, while neuropathology relies on protocols that may alter tissue chemistry and structure. In contrast, recent ex vivo studies in mice demonstrated that X-ray phase-contrast tomography enables study of the 3D distribution of both vasculature and neuronal networks, without sample sectioning or use of staining. Here we present our findings on ex vivo SOD1G93A ALS mice spinal cord at a micrometric scale. An unprecedented direct quantification of neuro-vascular alterations at different stages of the disease is shown.


Asunto(s)
Esclerosis Amiotrófica Lateral/diagnóstico por imagen , Médula Espinal/diagnóstico por imagen , Tomografía Computarizada por Rayos X/métodos , Animales , Modelos Animales de Enfermedad , Imagenología Tridimensional , Ratones , Ratones Transgénicos , Sensibilidad y Especificidad , Relación Señal-Ruido
20.
Mol Genet Metab ; 130(3): 197-208, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32439268

RESUMEN

Mucopolysaccharidosis type I (MPS-I), a lysosomal storage disorder caused by a deficiency of alpha-L-iduronidase enzyme, results in the progressive accumulation of glycosaminoglycans and consequent multiorgan dysfunction. Despite the effectiveness of hematopoietic stem cell transplantation (HSCT) and enzyme replacement therapy (ERT) in correcting clinical manifestations related to visceral organs, complete improvement of musculoskeletal and neurocognitive defects remains an unmet challenge and provides an impact on patients' quality of life. We tested the therapeutic efficacy of combining HSCT and ERT in the neonatal period. Using a mouse model of MPS-I, we demonstrated that the combination therapy improved clinical manifestations in organs usually refractory to current treatment. Moreover, combination with HSCT prevented the production of anti-IDUA antibodies that negatively impact ERT efficacy. The added benefits of combining both treatments also resulted in a reduction of skeletal anomalies and a trend towards decreased neuroinflammation and metabolic abnormalities. As currently there are limited therapeutic options for MPS-I patients, our findings suggest that the combination of HSCT and ERT during the neonatal period may provide a further step forward in the treatment of this rare disease.


Asunto(s)
Remodelación Ósea , Modelos Animales de Enfermedad , Terapia de Reemplazo Enzimático/métodos , Trasplante de Células Madre Hematopoyéticas/métodos , Iduronidasa/fisiología , Mucopolisacaridosis I/terapia , Animales , Animales Recién Nacidos , Terapia Combinada , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mucopolisacaridosis I/enzimología , Mucopolisacaridosis I/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA