Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Nucleic Acids Res ; 52(10): 6049-6065, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38709882

RESUMEN

Severe fever with thrombocytopenia syndrome virus (SFTSV) is a human pathogen that is now endemic to several East Asian countries. The viral large (L) protein catalyzes viral transcription by stealing host mRNA caps via a process known as cap-snatching. Here, we establish an in vitro cap-snatching assay and present three high-quality electron cryo-microscopy (cryo-EM) structures of the SFTSV L protein in biologically relevant, transcription-specific states. In a priming-state structure, we show capped RNA bound to the L protein cap-binding domain (CBD). The L protein conformation in this priming structure is significantly different from published replication-state structures, in particular the N- and C-terminal domains. The capped-RNA is positioned in a way that it can feed directly into the RNA-dependent RNA polymerase (RdRp) ready for elongation. We also captured the L protein in an early-elongation state following primer-incorporation demonstrating that this priming conformation is retained at least in the very early stages of primer extension. This structural data is complemented by in vitro biochemical and cell-based assays. Together, these insights further our mechanistic understanding of how SFTSV and other bunyaviruses incorporate stolen host mRNA fragments into their viral transcripts thereby allowing the virus to hijack host cell translation machinery.


Asunto(s)
Interacciones Microbiota-Huesped , Modelos Moleculares , Phlebovirus , Caperuzas de ARN , Transcripción Genética , Humanos , Microscopía por Crioelectrón , Phlebovirus/química , Phlebovirus/genética , Phlebovirus/ultraestructura , Conformación Proteica , Caperuzas de ARN/química , Caperuzas de ARN/metabolismo , Caperuzas de ARN/ultraestructura , ARN Viral/química , ARN Viral/metabolismo , ARN Polimerasa Dependiente del ARN/metabolismo , Proteínas Virales/química , Proteínas Virales/metabolismo , Proteínas Virales/ultraestructura , Replicación Viral/fisiología , Interacciones Microbiota-Huesped/fisiología
2.
PLoS Pathog ; 19(8): e1011533, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37549153

RESUMEN

The Bunyavirales order is a large and diverse group of segmented negative-strand RNA viruses. Several virus families within this order contain important human pathogens, including Sin Nombre virus (SNV) of the Hantaviridae. Despite the high epidemic potential of bunyaviruses, specific medical countermeasures such as vaccines or antivirals are missing. The multifunctional ~250 kDa L protein of hantaviruses, amongst other functional domains, harbors the RNA-dependent RNA polymerase (RdRp) and an endonuclease and catalyzes transcription as well as replication of the viral RNA genome, making it a promising therapeutic target. The development of inhibitors targeting these key processes requires a profound understanding of the catalytic mechanisms. Here, we established expression and purification protocols of the full-length SNV L protein bearing the endonuclease mutation K124A. We applied different biochemical in vitro assays to provide an extensive characterization of the different enzymatic functions as well as the capacity of the hantavirus L protein to interact with the viral RNA. By using single-particle cryo-EM, we obtained a 3D model including the L protein core region containing the RdRp, in complex with the 5' promoter RNA. This first high-resolution model of a New World hantavirus L protein shows striking similarity to related bunyavirus L proteins. The interaction of the L protein with the 5' RNA observed in the structural model confirms our hypothesis of protein-RNA binding based on our biochemical data. Taken together, this study provides an excellent basis for future structural and functional studies on the hantavirus L protein and for the development of antiviral compounds.


Asunto(s)
Bunyaviridae , Orthohantavirus , Virus ARN , Virus Sin Nombre , Humanos , Virus Sin Nombre/genética , Virus Sin Nombre/metabolismo , Orthohantavirus/genética , ARN Polimerasa Dependiente del ARN/genética , Bunyaviridae/metabolismo , ARN Viral/genética , Virus ARN/genética , Endonucleasas/genética , Endonucleasas/metabolismo
3.
Nucleic Acids Res ; 51(3): 1424-1442, 2023 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-36651274

RESUMEN

Severe fever with thrombocytopenia syndrome virus (SFTSV) is a phenuivirus that has rapidly become endemic in several East Asian countries. The large (L) protein of SFTSV, which includes the RNA-dependent RNA polymerase (RdRp), is responsible for catalysing viral genome replication and transcription. Here, we present 5 cryo-electron microscopy (cryo-EM) structures of the L protein in several states of the genome replication process, from pre-initiation to late-stage elongation, at a resolution of up to 2.6 Å. We identify how the L protein binds the 5' viral RNA in a hook-like conformation and show how the distal 5' and 3' RNA ends form a duplex positioning the 3' RNA terminus in the RdRp active site ready for initiation. We also observe the L protein stalled in the early and late stages of elongation with the RdRp core accommodating a 10-bp product-template duplex. This duplex ultimately splits with the template binding to a designated 3' secondary binding site. The structural data and observations are complemented by in vitro biochemical and cell-based mini-replicon assays. Altogether, our data provide novel key insights into the mechanism of viral genome replication by the SFTSV L protein and will aid drug development against segmented negative-strand RNA viruses.


Asunto(s)
Phlebovirus , Síndrome de Trombocitopenia Febril Grave , Humanos , Síndrome de Trombocitopenia Febril Grave/genética , Microscopía por Crioelectrón , ARN Viral/genética , ARN Polimerasa Dependiente del ARN/metabolismo , Phlebovirus/genética , Replicación Viral , Genoma Viral
4.
Nucleic Acids Res ; 48(10): 5749-5765, 2020 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-32313945

RESUMEN

The Bunyavirales order contains several emerging viruses with high epidemic potential, including Severe fever with thrombocytopenia syndrome virus (SFTSV). The lack of medical countermeasures, such as vaccines and antivirals, is a limiting factor for the containment of any virus outbreak. To develop such antivirals a profound understanding of the viral replication process is essential. The L protein of bunyaviruses is a multi-functional and multi-domain protein performing both virus transcription and genome replication and, therefore, is an ideal drug target. We established expression and purification procedures for the full-length L protein of SFTSV. By combining single-particle electron cryo-microscopy and X-ray crystallography, we obtained 3D models covering ∼70% of the SFTSV L protein in the apo-conformation including the polymerase core region, the endonuclease and the cap-binding domain. We compared this first L structure of the Phenuiviridae family to the structures of La Crosse peribunyavirus L protein and influenza orthomyxovirus polymerase. Together with a comprehensive biochemical characterization of the distinct functions of SFTSV L protein, this work provides a solid framework for future structural and functional studies of L protein-RNA interactions and the development of antiviral strategies against this group of emerging human pathogens.


Asunto(s)
ARN Polimerasas Dirigidas por ADN/química , Phlebovirus/enzimología , Proteínas Virales/química , Microscopía por Crioelectrón , ARN Polimerasas Dirigidas por ADN/metabolismo , Endorribonucleasas/metabolismo , Modelos Moleculares , Phlebovirus/genética , Regiones Promotoras Genéticas , Dominios Proteicos , Virus ARN/enzimología , Proteínas Virales/metabolismo , Replicación Viral
5.
J Virol ; 89(22): 11681-91, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26355093

RESUMEN

UNLABELLED: Geothermal and hypersaline environments are rich in virus-like particles, among which spindle-shaped morphotypes dominate. Currently, viruses with spindle- or lemon-shaped virions are exclusive to Archaea and belong to two distinct viral families. The larger of the two families, the Fuselloviridae, comprises tail-less, spindle-shaped viruses, which infect hosts from phylogenetically distant archaeal lineages. Sulfolobus spindle-shaped virus 1 (SSV1) is the best known member of the family and was one of the first hyperthermophilic archaeal viruses to be isolated. SSV1 is an attractive model for understanding virus-host interactions in Archaea; however, the constituents and architecture of SSV1 particles remain only partially characterized. Here, we have conducted an extensive biochemical characterization of highly purified SSV1 virions and identified four virus-encoded structural proteins, VP1 to VP4, as well as one DNA-binding protein of cellular origin. The virion proteins VP1, VP3, and VP4 undergo posttranslational modification by glycosylation, seemingly at multiple sites. VP1 is also proteolytically processed. In addition to the viral DNA-binding protein VP2, we show that viral particles contain the Sulfolobus solfataricus chromatin protein Sso7d. Finally, we provide evidence indicating that SSV1 virions contain glycerol dibiphytanyl glycerol tetraether (GDGT) lipids, resolving a long-standing debate on the presence of lipids within SSV1 virions. A comparison of the contents of lipids isolated from the virus and its host cell suggests that GDGTs are acquired by the virus in a selective manner from the host cytoplasmic membrane, likely during progeny egress. IMPORTANCE: Although spindle-shaped viruses represent one of the most prominent viral groups in Archaea, structural data on their virion constituents and architecture still are scarce. The comprehensive biochemical characterization of the hyperthermophilic virus SSV1 presented here brings novel and significant insights into the organization and architecture of spindle-shaped virions. The obtained data permit the comparison between spindle-shaped viruses residing in widely different ecological niches, improving our understanding of the adaptation of viruses with unusual morphotypes to extreme environmental conditions.


Asunto(s)
Proteínas Arqueales/metabolismo , Proteínas de la Cápside/metabolismo , Proteínas de Unión al ADN/metabolismo , Fuselloviridae/metabolismo , Lípidos de la Membrana/metabolismo , Sulfolobus solfataricus/virología , Secuencia de Aminoácidos , Fuselloviridae/genética , Genoma Viral/genética , Glicosilación , Haloarcula/virología , Interacciones Huésped-Patógeno , Interacciones Hidrofóbicas e Hidrofílicas , Datos de Secuencia Molecular , Proteínas Virales/metabolismo , Ensamble de Virus/genética
6.
J Virol ; 88(4): 2354-8, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24335300

RESUMEN

Viruses with spindle-shaped virions are abundant in diverse environments. Over the years, such viruses have been isolated from a wide range of archaeal hosts. Evolutionary relationships between them remained enigmatic, however. Here, using structural proteins as markers, we define familial ties among these "dark horses" of the virosphere and segregate all spindle-shaped viruses into two distinct evolutionary lineages, corresponding to Bicaudaviridae and Fuselloviridae. Our results illuminate the utility of structure-based virus classification and bring additional order to the virosphere.


Asunto(s)
Archaea/virología , Virus de Archaea/genética , Virus de Archaea/ultraestructura , Virus ADN/genética , Virus ADN/ultraestructura , Modelos Moleculares , Filogenia , Virus de Archaea/clasificación , Secuencia de Bases , Mapeo Cromosómico , Virus ADN/clasificación , Evolución Molecular , Fuselloviridae/clasificación , Fuselloviridae/genética , Marcadores Genéticos/genética , Microscopía Electrónica , Datos de Secuencia Molecular , Alineación de Secuencia , Análisis de Secuencia de ADN , Proteínas Estructurales Virales/genética
7.
J Virol ; 87(24): 13379-85, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24089554

RESUMEN

A decisive step in a virus infection cycle is the recognition of a specific receptor present on the host cell surface, subsequently leading to the delivery of the viral genome into the cell interior. Until now, the early stages of infection have not been thoroughly investigated for any virus infecting hyperthermophilic archaea. Here, we present the first study focusing on the primary interactions between the archaeal rod-shaped virus Sulfolobus islandicus rod-shaped virus 2 (SIRV2) (family Rudiviridae) and its hyperthermoacidophilic host, S. islandicus. We show that SIRV2 adsorption is very rapid, with the majority of virions being irreversibly bound to the host cell within 1 min. We utilized transmission electron microscopy and whole-cell electron cryotomography to demonstrate that SIRV2 virions specifically recognize the tips of pilus-like filaments, which are highly abundant on the host cell surface. Following the initial binding, the viral particles are found attached to the sides of the filaments, suggesting a movement along these appendages toward the cell surface. Finally, we also show that SIRV2 establishes superinfection exclusion, a phenomenon not previously described for archaeal viruses.


Asunto(s)
Rudiviridae/metabolismo , Sulfolobus/virología , Virión/fisiología , Internalización del Virus , Fimbrias Bacterianas/virología , Rudiviridae/ultraestructura , Virión/ultraestructura , Acoplamiento Viral
8.
Nat Struct Mol Biol ; 31(7): 1105-1113, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38316878

RESUMEN

Due to its asymmetric shape, size and compactness, the structure of the infectious mature virus (MV) of vaccinia virus (VACV), the best-studied poxvirus, remains poorly understood. Instead, subviral particles, in particular membrane-free viral cores, have been studied with cryo-electron microscopy. Here, we compared viral cores obtained by detergent stripping of MVs with cores in the cellular cytoplasm, early in infection. We focused on the prominent palisade layer on the core surface, combining cryo-electron tomography, subtomogram averaging and AlphaFold2 structure prediction. We showed that the palisade is composed of densely packed trimers of the major core protein A10. Trimers display a random order and their classification indicates structural flexibility. A10 on cytoplasmic cores is organized in a similar manner, indicating that the structures obtained in vitro are physiologically relevant. We discuss our results in the context of the VACV replicative cycle, and the assembly and disassembly of the infectious MV.


Asunto(s)
Microscopía por Crioelectrón , Virus Vaccinia , Virus Vaccinia/ultraestructura , Humanos , Multimerización de Proteína , Tomografía con Microscopio Electrónico , Modelos Moleculares , Virión/ultraestructura , Virión/metabolismo
9.
Nat Commun ; 15(1): 7352, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39187492

RESUMEN

The dynamic regulation of mitochondria shape via fission and fusion is critical for cellular responses to stimuli. In homeostatic cells, two modes of mitochondrial fission, midzone and peripheral, provide a decision fork between either proliferation or clearance of mitochondria. However, the relationship between specific mitochondria shapes and functions remains unclear in many biological contexts. While commonly associated with decreased bioenergetics, fragmented mitochondria paradoxically exhibit elevated respiration in several disease states, including infection with the prevalent pathogen human cytomegalovirus (HCMV) and metastatic melanoma. Here, incorporating super-resolution microscopy with mass spectrometry and metabolic assays, we use HCMV infection to establish a molecular mechanism for maintaining respiration within a fragmented mitochondria population. We establish that HCMV induces fragmentation through peripheral mitochondrial fission coupled with suppression of mitochondria fusion. Unlike uninfected cells, the progeny of peripheral fission enter mitochondria-ER encapsulations (MENCs) where they are protected from degradation and bioenergetically stabilized during infection. MENCs also stabilize pro-viral inter-mitochondria contacts (IMCs), which electrochemically link mitochondria and promote respiration. Demonstrating a broader relevance, we show that the fragmented mitochondria within metastatic melanoma cells also form MENCs. Our findings establish a mechanism where mitochondria fragmentation can promote increased respiration, a feature relevant in the context of human diseases.


Asunto(s)
Citomegalovirus , Retículo Endoplásmico , Metabolismo Energético , Mitocondrias , Dinámicas Mitocondriales , Humanos , Mitocondrias/metabolismo , Citomegalovirus/fisiología , Retículo Endoplásmico/metabolismo , Infecciones por Citomegalovirus/metabolismo , Infecciones por Citomegalovirus/virología , Melanoma/metabolismo , Melanoma/patología , Melanoma/virología , Línea Celular Tumoral
10.
Viruses ; 15(2)2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36851804

RESUMEN

There was an error in the original publication [...].

11.
Elife ; 112022 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-35900198

RESUMEN

Mimivirus is the prototype of the Mimiviridae family of giant dsDNA viruses. Little is known about the organization of the 1.2 Mb genome inside the membrane-limited nucleoid filling the ~0.5 µm icosahedral capsids. Cryo-electron microscopy, cryo-electron tomography, and proteomics revealed that it is encased into a ~30-nm diameter helical protein shell surprisingly composed of two GMC-type oxidoreductases, which also form the glycosylated fibrils decorating the capsid. The genome is arranged in 5- or 6-start left-handed super-helices, with each DNA-strand lining the central channel. This luminal channel of the nucleoprotein fiber is wide enough to accommodate oxidative stress proteins and RNA polymerase subunits identified by proteomics. Such elegant supramolecular organization would represent a remarkable evolutionary strategy for packaging and protecting the genome, in a state ready for immediate transcription upon unwinding in the host cytoplasm. The parsimonious use of the same protein in two unrelated substructures of the virion is unexpected for a giant virus with thousand genes at its disposal.


Asunto(s)
Virus Gigantes , Mimiviridae , Cápside/metabolismo , Microscopía por Crioelectrón/métodos , Genoma Viral , Virus Gigantes/genética , Mimiviridae/genética , Nucleoproteínas/genética , Nucleoproteínas/metabolismo , Oxidorreductasas/metabolismo
12.
Viruses ; 13(8)2021 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-34452426

RESUMEN

Hantaviruses infect a wide range of hosts including insectivores and rodents and can also cause zoonotic infections in humans, which can lead to severe disease with possible fatal outcomes. Hantavirus outbreaks are usually linked to the population dynamics of the host animals and their habitats being in close proximity to humans, which is becoming increasingly important in a globalized world. Currently there is neither an approved vaccine nor a specific and effective antiviral treatment available for use in humans. Hantaviruses belong to the order Bunyavirales with a tri-segmented negative-sense RNA genome. They encode only five viral proteins and replicate and transcribe their genome in the cytoplasm of infected cells. However, many details of the viral amplification cycle are still unknown. In recent years, structural biology methods such as cryo-electron tomography, cryo-electron microscopy, and crystallography have contributed essentially to our understanding of virus entry by membrane fusion as well as genome encapsidation by the nucleoprotein. In this review, we provide an update on the hantavirus replication cycle with a special focus on structural virology aspects.


Asunto(s)
Genoma Viral , Orthohantavirus/genética , Orthohantavirus/fisiología , Replicación Viral , Animales , Microscopía por Crioelectrón , Cristalografía por Rayos X , Orthohantavirus/química , Infecciones por Hantavirus/virología , Humanos , Roedores/virología , Proteínas Virales/genética , Ensamble de Virus , Internalización del Virus
13.
Nat Commun ; 12(1): 7018, 2021 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-34857749

RESUMEN

Lassa virus is endemic in West Africa and can cause severe hemorrhagic fever. The viral L protein transcribes and replicates the RNA genome via its RNA-dependent RNA polymerase activity. Here, we present nine cryo-EM structures of the L protein in the apo-, promoter-bound pre-initiation and active RNA synthesis states. We characterize distinct binding pockets for the conserved 3' and 5' promoter RNAs and show how full-promoter binding induces a distinct pre-initiation conformation. In the apo- and early elongation states, the endonuclease is inhibited by two distinct L protein peptides, whereas in the pre-initiation state it is uninhibited. In the early elongation state, a template-product duplex is bound in the active site cavity together with an incoming non-hydrolysable nucleotide and the full C-terminal region of the L protein, including the putative cap-binding domain, is well-ordered. These data advance our mechanistic understanding of how this flexible and multifunctional molecular machine is activated.


Asunto(s)
Virus Lassa/genética , ARN Viral/química , ARN Polimerasa Dependiente del ARN/química , Transcripción Genética , Proteínas Virales/química , Secuencias de Aminoácidos , Dominio Catalítico , Clonación Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Virus Lassa/química , Virus Lassa/enzimología , Modelos Moleculares , Regiones Promotoras Genéticas , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , ARN Viral/biosíntesis , ARN Viral/genética , ARN Polimerasa Dependiente del ARN/genética , ARN Polimerasa Dependiente del ARN/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato , Proteínas Virales/genética , Proteínas Virales/metabolismo
14.
Annu Rev Virol ; 7(1): 239-262, 2020 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-32631159

RESUMEN

Viruses are obligatory intracellular parasites that reprogram host cells upon infection to produce viral progeny. Here, we review recent structural insights into virus-host interactions in bacteria, archaea, and eukaryotes unveiled by cellular electron cryo-tomography (cryoET). This advanced three-dimensional imaging technique of vitreous samples in near-native state has matured over the past two decades and proven powerful in revealing molecular mechanisms underlying viral replication. Initial studies were restricted to cell peripheries and typically focused on early infection steps, analyzing surface proteins and viral entry. Recent developments including cryo-thinning techniques, phase-plate imaging, and correlative approaches have been instrumental in also targeting rare events inside infected cells. When combined with advances in dedicated image analyses and processing methods, details of virus assembly and egress at (sub)nanometer resolution were uncovered. Altogether, we provide a historical and technical perspective and discuss future directions and impacts of cryoET for integrative structural cell biology analyses of viruses.


Asunto(s)
Microscopía por Crioelectrón/métodos , Tomografía con Microscopio Electrónico/métodos , Interacciones Microbiota-Huesped , Imagenología Tridimensional/métodos , Humanos , Procesamiento de Imagen Asistido por Computador , Imagenología Tridimensional/instrumentación , Replicación Viral , Virus/ultraestructura
16.
J Mol Biol ; 430(12): 1714-1724, 2018 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-29702107

RESUMEN

Nucleocytoplasmic large DNA viruses are a steadily growing group of viruses that infect a wide range of hosts and are characterized by large particle dimensions and genome sizes. Understanding how they enter into the host cell and deliver their genome in the cytoplasm is therefore particularly intriguing. Here, we review the current knowledge on the entry of two of the best-characterized nucleocytoplasmic large DNA viruses: the poxvirus Vaccinia virus (VACV) and the giant virus Mimivirus. While previous studies on VACV had proposed both direct fusion at the plasma membrane and endocytosis as entry routes, more recent biochemical and morphological data argue for macropinocytosis as well. Notably, direct imaging by electron microscopy (EM) also supported the existence of parallel ways of entry for VACV. Instead, all the giant viruses studied so far only enter cells by phagocytosis as observed by EM, and we discuss the mechanisms for opening of the particle, fusion of the viral and phagosomal membranes and genome delivery via a unique portal, specific for each giant virus. VACV core uncoating, in contrast, remains a morphologically ill-defined process. We argue that correlated light and electron microscopy methods are required to study VACV entry and uncoating in a direct and systematic manner. Such EM studies should also address whether entry of single particles and viral aggregates is different and thus provide an explanation for the different modes of entry described in the literature.


Asunto(s)
Mimiviridae/ultraestructura , Virus Vaccinia/ultraestructura , Internalización del Virus , Virus ADN , Tamaño del Genoma , Genoma Viral , Humanos , Microscopía Electrónica , Mimiviridae/fisiología , Fagocitosis , Virus Vaccinia/fisiología
17.
Nat Med ; 24(4): 427-437, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29505030

RESUMEN

Spinal bulbar muscular atrophy (SBMA) is a motor neuron disease caused by toxic gain of function of the androgen receptor (AR). Previously, we found that co-regulator binding through the activation function-2 (AF2) domain of AR is essential for pathogenesis, suggesting that AF2 may be a potential drug target for selective modulation of toxic AR activity. We screened previously identified AF2 modulators for their ability to rescue toxicity in a Drosophila model of SBMA. We identified two compounds, tolfenamic acid (TA) and 1-[2-(4-methylphenoxy)ethyl]-2-[(2-phenoxyethyl)sulfanyl]-1H-benzimidazole (MEPB), as top candidates for rescuing lethality, locomotor function and neuromuscular junction defects in SBMA flies. Pharmacokinetic analyses in mice revealed a more favorable bioavailability and tissue retention of MEPB compared with TA in muscle, brain and spinal cord. In a preclinical trial in a new mouse model of SBMA, MEPB treatment yielded a dose-dependent rescue from loss of body weight, rotarod activity and grip strength. In addition, MEPB ameliorated neuronal loss, neurogenic atrophy and testicular atrophy, validating AF2 modulation as a potent androgen-sparing strategy for SBMA therapy.


Asunto(s)
Atrofia Muscular Espinal/patología , Degeneración Nerviosa/patología , Receptores Androgénicos/química , Receptores Androgénicos/metabolismo , Animales , Bencimidazoles/farmacología , Bencimidazoles/uso terapéutico , Proteínas Co-Represoras/metabolismo , Modelos Animales de Enfermedad , Drosophila melanogaster , Células HEK293 , Humanos , Masculino , Ratones Transgénicos , Atrofia Muscular Espinal/tratamiento farmacológico , Degeneración Nerviosa/tratamiento farmacológico , Fenotipo , Proyectos Piloto , Dominios Proteicos , Expansión de Repetición de Trinucleótido/genética , ortoaminobenzoatos/farmacología , ortoaminobenzoatos/uso terapéutico
18.
mBio ; 7(5)2016 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-27624130

RESUMEN

UNLABELLED: Similar to many eukaryotic viruses (and unlike bacteriophages), viruses infecting archaea are often encased in lipid-containing envelopes. However, the mechanisms of their morphogenesis and egress remain unexplored. Here, we used dual-axis electron tomography (ET) to characterize the morphogenesis of Sulfolobus spindle-shaped virus 1 (SSV1), the prototype of the family Fuselloviridae and representative of the most abundant archaea-specific group of viruses. Our results show that SSV1 assembly and egress are concomitant and occur at the cellular cytoplasmic membrane via a process highly reminiscent of the budding of enveloped viruses that infect eukaryotes. The viral nucleoprotein complexes are extruded in the form of previously unknown rod-shaped intermediate structures which have an envelope continuous with the host membrane. Further maturation into characteristic spindle-shaped virions takes place while virions remain attached to the cell surface. Our data also revealed the formation of constricted ring-like structures which resemble the budding necks observed prior to the ESCRT machinery-mediated membrane scission during egress of various enveloped viruses of eukaryotes. Collectively, we provide evidence that archaeal spindle-shaped viruses contain a lipid envelope acquired upon budding of the viral nucleoprotein complex through the host cytoplasmic membrane. The proposed model bears a clear resemblance to the egress strategy employed by enveloped eukaryotic viruses and raises important questions as to how the archaeal single-layered membrane composed of tetraether lipids can undergo scission. IMPORTANCE: The replication of enveloped viruses has been extensively studied in eukaryotes but has remained unexplored for enveloped viruses infecting Archaea Here, we provide a sequential view on the assembly and egress of SSV1, a prototypic archaeal virus. The observed process is highly similar to the budding of eukaryotic enveloped viruses, including human immunodeficiency virus, influenza virus, and Ebola virus. The present study is the first to characterize such a phenomenon in archeal cells, showing that membrane budding is not an exclusive feature of eukaryotic viruses. Our results provide significant insights into the biogenesis and architecture of unique, spindle-shaped virions that infect archaea. Furthermore, our findings open doors for future inquiries into (i) the evolution of the virus budding process, (ii) mechanistic details of virus-mediated membrane scission in Archaea, and (iii) elucidation of virus- and host-encoded molecular players responsible for archaeal membrane and surface remodeling.


Asunto(s)
Archaea/virología , Fuselloviridae/fisiología , Liberación del Virus , Archaea/ultraestructura , Tomografía con Microscopio Electrónico , Fuselloviridae/ultraestructura
19.
Front Microbiol ; 6: 552, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26097469

RESUMEN

The cell envelope represents the main line of host defense that viruses encounter on their way from one cell to another. The cytoplasmic membrane in general is a physical barrier that needs to be crossed both upon viral entry and exit. Therefore, viruses from the three domains of life employ a wide range of strategies for perforation of the cell membrane, each adapted to the cell surface environment of their host. Here, we review recent insights on entry and egress mechanisms of viruses infecting archaea. Due to the unique nature of the archaeal cell envelope, these particular viruses exhibit novel and unexpected mechanisms to traverse the cellular membrane.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA