RESUMEN
Glioblastoma multiforme (GBM) is an aggressive brain tumor for which current immunotherapy approaches have been unsuccessful. Here, we explore the mechanisms underlying immune evasion in GBM. By serially transplanting GBM stem cells (GSCs) into immunocompetent hosts, we uncover an acquired capability of GSCs to escape immune clearance by establishing an enhanced immunosuppressive tumor microenvironment. Mechanistically, this is not elicited via genetic selection of tumor subclones, but through an epigenetic immunoediting process wherein stable transcriptional and epigenetic changes in GSCs are enforced following immune attack. These changes launch a myeloid-affiliated transcriptional program, which leads to increased recruitment of tumor-associated macrophages. Furthermore, we identify similar epigenetic and transcriptional signatures in human mesenchymal subtype GSCs. We conclude that epigenetic immunoediting may drive an acquired immune evasion program in the most aggressive mesenchymal GBM subtype by reshaping the tumor immune microenvironment.
Asunto(s)
Neoplasias Encefálicas/inmunología , Epigénesis Genética , Glioblastoma/inmunología , Evasión Inmune/inmunología , Células Mieloides/inmunología , Células Madre Neoplásicas/inmunología , Microambiente Tumoral/inmunología , Animales , Apoptosis , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Proliferación Celular , Metilación de ADN , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/patología , Humanos , Masculino , Ratones , Ratones Endogámicos NOD , Ratones SCID , Células Mieloides/metabolismo , Células Mieloides/patología , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
Checkpoint inhibitors (CPIs) augment adaptive immunity. Systematic pan-tumor analyses may reveal the relative importance of tumor-cell-intrinsic and microenvironmental features underpinning CPI sensitization. Here, we collated whole-exome and transcriptomic data for >1,000 CPI-treated patients across seven tumor types, utilizing standardized bioinformatics workflows and clinical outcome criteria to validate multivariable predictors of CPI sensitization. Clonal tumor mutation burden (TMB) was the strongest predictor of CPI response, followed by total TMB and CXCL9 expression. Subclonal TMB, somatic copy alteration burden, and histocompatibility leukocyte antigen (HLA) evolutionary divergence failed to attain pan-cancer significance. Dinucleotide variants were identified as a source of immunogenic epitopes associated with radical amino acid substitutions and enhanced peptide hydrophobicity/immunogenicity. Copy-number analysis revealed two additional determinants of CPI outcome supported by prior functional evidence: 9q34 (TRAF2) loss associated with response and CCND1 amplification associated with resistance. Finally, single-cell RNA sequencing (RNA-seq) of clonal neoantigen-reactive CD8 tumor-infiltrating lymphocytes (TILs), combined with bulk RNA-seq analysis of CPI-responding tumors, identified CCR5 and CXCL13 as T-cell-intrinsic markers of CPI sensitivity.
Asunto(s)
Inhibidores de Puntos de Control Inmunológico/farmacología , Neoplasias/inmunología , Linfocitos T/inmunología , Biomarcadores de Tumor/metabolismo , Antígenos CD8/metabolismo , Quimiocina CXCL13/metabolismo , Cromosomas Humanos Par 9/genética , Estudios de Cohortes , Ciclina D1/genética , Variaciones en el Número de Copia de ADN/genética , Exoma/genética , Amplificación de Genes , Humanos , Evasión Inmune/efectos de los fármacos , Análisis Multivariante , Mutación/genética , Neoplasias/patología , Polimorfismo de Nucleótido Simple/genética , Receptores CCR5/metabolismo , Linfocitos T/efectos de los fármacos , Carga Tumoral/genéticaRESUMEN
Immune evasion is a hallmark of cancer, enabling tumors to survive contact with the host immune system and evade the cycle of immune recognition and destruction. Here, we review the current understanding of the cancer cell-intrinsic factors driving immune evasion. We focus on T cells as key effectors of anti-cancer immunity and argue that cancer cells evade immune destruction by gaining control over pathways that usually serve to maintain physiological tolerance to self. Using this framework, we place recent mechanistic advances in the understanding of cancer immune evasion into broad categories of control over T cell localization, antigen recognition, and acquisition of optimal effector function. We discuss the redundancy in the pathways involved and identify knowledge gaps that must be overcome to better target immune evasion, including the need for better, routinely available tools that incorporate the growing understanding of evasion mechanisms to stratify patients for therapy and trials.
Asunto(s)
Neoplasias , Humanos , Tolerancia Inmunológica , Linfocitos T , Inmunoterapia , Evasión InmuneRESUMEN
The mechanisms by which melanoma and other cancer cells evade anti-tumor immunity remain incompletely understood. Here, we show that the growth of tumors formed by mutant Braf(V600E) mouse melanoma cells in an immunocompetent host requires their production of prostaglandin E2, which suppresses immunity and fuels tumor-promoting inflammation. Genetic ablation of cyclooxygenases (COX) or prostaglandin E synthases in Braf(V600E) mouse melanoma cells, as well as in Nras(G12D) melanoma or in breast or colorectal cancer cells, renders them susceptible to immune control and provokes a shift in the tumor inflammatory profile toward classic anti-cancer immune pathways. This mouse COX-dependent inflammatory signature is remarkably conserved in human cutaneous melanoma biopsies, arguing for COX activity as a driver of immune suppression across species. Pre-clinical data demonstrate that inhibition of COX synergizes with anti-PD-1 blockade in inducing eradication of tumors, implying that COX inhibitors could be useful adjuvants for immune-based therapies in cancer patients.
Asunto(s)
Neoplasias/inmunología , Prostaglandina-Endoperóxido Sintasas/metabolismo , Escape del Tumor , Inmunidad Adaptativa , Animales , Anticuerpos Monoclonales/administración & dosificación , Antígenos CD/inmunología , Aspirina/administración & dosificación , Línea Celular Tumoral , Células Dendríticas/inmunología , Humanos , Inmunidad Innata , Inmunoterapia , Inflamación/tratamiento farmacológico , Inflamación/inmunología , Cadenas alfa de Integrinas/inmunología , Interferones/metabolismo , Melanoma/tratamiento farmacológico , Melanoma/inmunología , Ratones , Neoplasias/tratamiento farmacológico , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Prostaglandinas/inmunología , Proteínas Proto-Oncogénicas B-raf/metabolismoRESUMEN
In addition to helper and regulatory potential, CD4+ T cells also acquire cytotoxic activity marked by granzyme B (GzmB) expression and the ability to promote rejection of established tumors. Here, we examined the molecular and cellular mechanisms underpinning the differentiation of cytotoxic CD4+ T cells following immunotherapy. CD4+ transfer into lymphodepleted animals or regulatory T (Treg) cell depletion promoted GzmB expression by tumor-infiltrating CD4+, and this was prevented by interleukin-2 (IL-2) neutralization. Transcriptional analysis revealed a polyfunctional helper and cytotoxic phenotype characterized by the expression of the transcription factors T-bet and Blimp-1. While T-bet ablation restricted interferon-γ (IFN-γ) production, loss of Blimp-1 prevented GzmB expression in response to IL-2, suggesting two independent programs required for polyfunctionality of tumor-reactive CD4+ T cells. Our findings underscore the role of Treg cells, IL-2, and Blimp-1 in controlling the differentiation of cytotoxic CD4+ T cells and offer a pathway to enhancement of anti-tumor activity through their manipulation.
Asunto(s)
Granzimas/inmunología , Neoplasias/inmunología , Factor 1 de Unión al Dominio 1 de Regulación Positiva/metabolismo , Proteínas de Dominio T Box/metabolismo , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/trasplante , Traslado Adoptivo , Animales , Línea Celular Tumoral , Humanos , Interferón gamma/inmunología , Interleucina-2/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Linfocitos T Reguladores/citología , Microambiente Tumoral/inmunologíaRESUMEN
CD25 is expressed at high levels on regulatory T (Treg) cells and was initially proposed as a target for cancer immunotherapy. However, anti-CD25 antibodies have displayed limited activity against established tumors. We demonstrated that CD25 expression is largely restricted to tumor-infiltrating Treg cells in mice and humans. While existing anti-CD25 antibodies were observed to deplete Treg cells in the periphery, upregulation of the inhibitory Fc gamma receptor (FcγR) IIb at the tumor site prevented intra-tumoral Treg cell depletion, which may underlie the lack of anti-tumor activity previously observed in pre-clinical models. Use of an anti-CD25 antibody with enhanced binding to activating FcγRs led to effective depletion of tumor-infiltrating Treg cells, increased effector to Treg cell ratios, and improved control of established tumors. Combination with anti-programmed cell death protein-1 antibodies promoted complete tumor rejection, demonstrating the relevance of CD25 as a therapeutic target and promising substrate for future combination approaches in immune-oncology.
Asunto(s)
Anticuerpos Monoclonales/inmunología , Fragmentos Fc de Inmunoglobulinas/inmunología , Subunidad alfa del Receptor de Interleucina-2/inmunología , Neoplasias/inmunología , Receptor de Muerte Celular Programada 1/inmunología , Linfocitos T Reguladores/inmunología , Animales , Anticuerpos Monoclonales/metabolismo , Anticuerpos Monoclonales/uso terapéutico , Línea Celular Tumoral , Citometría de Flujo , Humanos , Inmunoterapia/métodos , Células K562 , Estimación de Kaplan-Meier , Depleción Linfocítica , Ratones , Neoplasias/patología , Neoplasias/terapia , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Receptor de Muerte Celular Programada 1/metabolismo , Unión Proteica/inmunología , Receptores de IgG/inmunología , Receptores de IgG/metabolismo , Linfocitos T Reguladores/metabolismoRESUMEN
Immune checkpoint blockade (ICB) is revolutionizing cancer medicine, yet the molecular basis of resistance remains unclear. In a recent issue of Cell, Benci et al. (2016) demonstrate that sustained interferon signaling is central to the development of PD-L1-dependent and -independent resistance to ICB.
Asunto(s)
Anticuerpos Monoclonales , Receptor de Muerte Celular Programada 1/inmunología , Antígeno B7-H1 , Humanos , Inmunoterapia , NeoplasiasRESUMEN
Inflammation triggers the differentiation of Ly6Chi monocytes into microbicidal macrophages or monocyte-derived dendritic cells (moDCs). Yet, it is unclear whether environmental inflammatory cues control the polarization of monocytes toward each of these fates or whether specialized monocyte progenitor subsets exist before inflammation. Here, we have shown that naive monocytes are phenotypically heterogeneous and contain an NR4A1- and Flt3L-independent, CCR2-dependent, Flt3+CD11c-MHCII+PU.1hi subset. This subset acted as a precursor for FcγRIII+PD-L2+CD209a+, GM-CSF-dependent moDCs but was distal from the DC lineage, as shown by fate-mapping experiments using Zbtb46. By contrast, Flt3-CD11c-MHCII-PU.1lo monocytes differentiated into FcγRIII+PD-L2-CD209a-iNOS+ macrophages upon microbial stimulation. Importantly, Sfpi1 haploinsufficiency genetically distinguished the precursor activities of monocytes toward moDCs or microbicidal macrophages. Indeed, Sfpi1+/- mice had reduced Flt3+CD11c-MHCII+ monocytes and GM-CSF-dependent FcγRIII+PD-L2+CD209a+ moDCs but generated iNOS+ macrophages more efficiently. Therefore, intercellular disparities of PU.1 expression within naive monocytes segregate progenitor activity for inflammatory iNOS+ macrophages or moDCs.
Asunto(s)
Diferenciación Celular/inmunología , Células Dendríticas/inmunología , Macrófagos/inmunología , Monocitos/inmunología , Traslado Adoptivo , Animales , Antígenos Ly/inmunología , Separación Celular , Células Dendríticas/citología , Citometría de Flujo , Macrófagos/citología , Ratones , Monocitos/citología , Óxido Nítrico Sintasa de Tipo II/inmunología , Análisis de Secuencia por Matrices de Oligonucleótidos , Reacción en Cadena de la PolimerasaRESUMEN
The interplay between an evolving cancer and a dynamic immune microenvironment remains unclear. Here we analyse 258 regions from 88 early-stage, untreated non-small-cell lung cancers using RNA sequencing and histopathology-assessed tumour-infiltrating lymphocyte estimates. Immune infiltration varied both between and within tumours, with different mechanisms of neoantigen presentation dysfunction enriched in distinct immune microenvironments. Sparsely infiltrated tumours exhibited a waning of neoantigen editing during tumour evolution, indicative of historical immune editing, or copy-number loss of previously clonal neoantigens. Immune-infiltrated tumour regions exhibited ongoing immunoediting, with either loss of heterozygosity in human leukocyte antigens or depletion of expressed neoantigens. We identified promoter hypermethylation of genes that contain neoantigenic mutations as an epigenetic mechanism of immunoediting. Our results suggest that the immune microenvironment exerts a strong selection pressure in early-stage, untreated non-small-cell lung cancers that produces multiple routes to immune evasion, which are clinically relevant and forecast poor disease-free survival.
Asunto(s)
Antígenos de Neoplasias/inmunología , Evolución Molecular , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/patología , Escape del Tumor/inmunología , Adenocarcinoma/genética , Adenocarcinoma/inmunología , Adenocarcinoma/patología , Presentación de Antígeno/inmunología , Antígenos de Neoplasias/genética , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/inmunología , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/inmunología , Carcinoma de Células Escamosas/patología , Supervivencia sin Enfermedad , Femenino , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Neoplasias Pulmonares/genética , Linfocitos Infiltrantes de Tumor/inmunología , Masculino , Pronóstico , Microambiente Tumoral/inmunologíaRESUMEN
Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is known for specifically killing cancer cells, whereas in resistant cancers, TRAIL/TRAIL-R can promote metastasis via Rac1 and PI3K. It remains unknown, however, whether and to what extent TRAIL/TRAIL-R signaling in cancer cells can affect the immune microenvironment. Here we show that TRAIL-triggered cytokine secretion from TRAIL-resistant cancer cells is FADD dependent and identify the TRAIL-induced secretome to drive monocyte polarization to myeloid-derived suppressor cells (MDSCs) and M2-like macrophages. TRAIL-R suppression in tumor cells impaired CCL2 production and diminished both lung MDSC presence and tumor growth. In accordance, the receptor of CCL2, CCR2, is required to facilitate increased MDSC presence and tumor growth. Finally, TRAIL and CCL2 are co-regulated with MDSC/M2 markers in lung adenocarcinoma patients. Collectively, endogenous TRAIL/TRAIL-R-mediated CCL2 secretion promotes accumulation of tumor-supportive immune cells in the cancer microenvironment, thereby revealing a tumor-supportive immune-modulatory role of the TRAIL/TRAIL-R system in cancer biology.
Asunto(s)
Adenocarcinoma/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Citocinas/metabolismo , Neoplasias Pulmonares/metabolismo , Macrófagos/metabolismo , Receptores CCR2/metabolismo , Ligando Inductor de Apoptosis Relacionado con TNF/metabolismo , Microambiente Tumoral , Células A549 , Adenocarcinoma/genética , Adenocarcinoma/inmunología , Adenocarcinoma/patología , Adenocarcinoma del Pulmón , Animales , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/inmunología , Carcinoma de Pulmón de Células no Pequeñas/patología , Caspasa 8/genética , Caspasa 8/metabolismo , Proliferación Celular , Quimiocina CCL2/metabolismo , Proteína de Dominio de Muerte Asociada a Fas/genética , Proteína de Dominio de Muerte Asociada a Fas/metabolismo , Femenino , Células HCT116 , Células HeLa , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/patología , Macrófagos/inmunología , Macrófagos/patología , Ratones Endogámicos C57BL , Ratones SCID , Fenotipo , Interferencia de ARN , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/genética , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/metabolismo , Transducción de Señal , Factores de Tiempo , Transfección , Carga TumoralRESUMEN
Quiescence is a state of cell cycle arrest, allowing cancer cells to evade anti-proliferative cancer therapies. Quiescent cancer stem cells are thought to be responsible for treatment resistance in glioblastoma, an aggressive brain cancer with poor patient outcomes. However, the regulation of quiescence in glioblastoma cells involves a myriad of intrinsic and extrinsic mechanisms that are not fully understood. In this review, we synthesise the literature on quiescence regulatory mechanisms in the context of glioblastoma and propose an ecological perspective to stemness-like phenotypes anchored to the contemporary concepts of niche theory. From this perspective, the cell cycle regulation is multiscale and multidimensional, where the niche dimensions extend to extrinsic variables in the tumour microenvironment that shape cell fate. Within this conceptual framework and powered by ecological niche modelling, the discovery of microenvironmental variables related to hypoxia and mechanosignalling that modulate proliferative plasticity and intratumor immune activity may open new avenues for therapeutic targeting of emerging biological vulnerabilities in glioblastoma.
Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/patología , Neoplasias Encefálicas/patología , Encéfalo/metabolismo , Células Madre Neoplásicas/metabolismo , Diferenciación Celular , Microambiente TumoralRESUMEN
Programmed cell death protein 1 (PD-1) is expressed on T cells upon T cell receptor (TCR) stimulation. PD-1 ligand 1 (PD-L1) is expressed in most tumor environments, and its binding to PD-1 on T cells drives them to apoptosis or into a regulatory phenotype. The fact that PD-L1 itself is also expressed on T cells upon activation has been largely neglected. Here, we demonstrate that PD-L1 ligation on human CD25-depleted CD4+ T cells, combined with CD3/TCR stimulation, induces their conversion into highly suppressive T cells. Furthermore, this effect was most prominent in memory (CD45RA-CD45RO+) T cells. PD-L1 engagement on T cells resulted in reduced ERK phosphorylation and decreased AKT/mTOR/S6 signaling. Importantly, T cells from rheumatoid arthritis patients exhibited high basal levels of phosphorylated ERK and following PD-L1 cross-linking both ERK signaling and the AKT/mTOR/S6 pathway failed to be down modulated, making them refractory to the acquisition of a regulatory phenotype. Altogether, our results suggest that PD-L1 signaling on memory T cells could play an important role in resolving inflammatory responses; maintaining a tolerogenic environment and its failure could contribute to ongoing autoimmunity.
Asunto(s)
Antígeno B7-H1/metabolismo , Linfocitos T CD4-Positivos/fisiología , Linfocitos T Reguladores/fisiología , Antígeno B7-H1/fisiología , Linfocitos T CD4-Positivos/metabolismo , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/fisiología , Transdiferenciación Celular/genética , Transdiferenciación Celular/inmunología , Estudios de Cohortes , Humanos , Tolerancia Inmunológica/genética , Tolerancia Inmunológica/inmunología , Memoria Inmunológica/fisiología , Antígenos Comunes de Leucocito/metabolismo , Fenotipo , Receptor de Muerte Celular Programada 1/metabolismo , Receptor de Muerte Celular Programada 1/fisiología , Transducción de Señal/fisiología , Linfocitos T Reguladores/metabolismoRESUMEN
Advances in immune checkpoint and combination therapy have led to improvement in overall survival for patients with advanced melanoma. Improved understanding of the tumor, tumor microenvironment and tumor immune-evasion mechanisms has resulted in new approaches to targeting and harnessing the host immune response. Combination modalities with other immunotherapy agents, chemotherapy, radiotherapy, electrochemotherapy are also being explored to overcome resistance and to potentiate the immune response. In addition, novel approaches such as adoptive cell therapy, oncogenic viruses, vaccines and different strategies of drug administration including sequential, or combination treatment are being tested. Despite the progress in diagnosis of melanocytic lesions, correct classification of patients, selection of appropriate adjuvant and systemic theràapies, and prediction of response to therapy remain real challenges in melanoma. Improved understanding of the tumor microenvironment, tumor immunity and response to therapy has prompted extensive translational and clinical research in melanoma. There is a growing evidence that genomic and immune features of pre-treatment tumor biopsies may correlate with response in patients with melanoma and other cancers, but they have yet to be fully characterized and implemented clinically. Development of novel biomarker platforms may help to improve diagnostics and predictive accuracy for selection of patients for specific treatment. Overall, the future research efforts in melanoma therapeutics and translational research should focus on several aspects including: (a) developing robust biomarkers to predict efficacy of therapeutic modalities to guide clinical decision-making and optimize treatment regimens, (b) identifying mechanisms of therapeutic resistance to immune checkpoint inhibitors that are potentially actionable, (c) identifying biomarkers to predict therapy-induced adverse events, and (d) studying mechanism of actions of therapeutic agents and developing algorithms to optimize combination treatments. During the Melanoma Bridge meeting (December 2nd-4th, 2021, Naples, Italy) discussions focused on the currently approved systemic and local therapies for advanced melanoma and discussed novel biomarker strategies and advances in precision medicine as well as the impact of COVID-19 pandemic on management of melanoma patients.
Asunto(s)
COVID-19 , Melanoma , Biomarcadores , Humanos , Inmunoterapia/métodos , Italia , Melanoma/genética , Pandemias , Microambiente TumoralRESUMEN
The spatial architecture of the lymphoid tissue in follicular lymphoma (FL) presents unique challenges to studying its immune microenvironment. We investigated the spatial interplay of T cells, macrophages, myeloid cells and natural killer T cells using multispectral immunofluorescence images of diagnostic biopsies of 32 patients. A deep learning-based image analysis pipeline was tailored to the needs of follicular lymphoma spatial histology research, enabling the identification of different immune cells within and outside neoplastic follicles. We analyzed the density and spatial co-localization of immune cells in the inter-follicular and intra-follicular regions of follicular lymphoma. Low inter-follicular density of CD8+FOXP3+ cells and co-localization of CD8+FOXP3+ with CD4+CD8+ cells were significantly associated with relapse (p = 0.0057 and p = 0.0019, respectively) and shorter time to progression after first-line treatment (Logrank p = 0.0097 and log-rank p = 0.0093, respectively). A low inter-follicular density of CD8+FOXP3+ cells is associated with increased risk of relapse independent of follicular lymphoma international prognostic index (FLIPI) (p = 0.038, Hazard ratio (HR) = 0.42 [0.19, 0.95], but not independent of co-localization of CD8+FOXP3+ with CD4+CD8+ cells (p = 0.43). Co-localization of CD8+FOXP3+ with CD4+CD8+ cells is predictors of time to relapse independent of the FLIPI score and density of CD8+FOXP3+ cells (p = 0.027, HR = 0.0019 [7.19 × 10-6 , 0.49], This suggests a potential role of inter-follicular CD8+FOXP3+ and CD4+CD8+ cells in the disease progression of FL, warranting further validation on larger patient cohorts.
Asunto(s)
Linfoma Folicular , Linfocitos T CD8-positivos , Factores de Transcripción Forkhead , Humanos , Linfoma Folicular/patología , Recurrencia Local de Neoplasia , Pronóstico , Microambiente TumoralRESUMEN
The generation and maintenance of CD8+ T cell memory is crucial to long-term host survival, yet the basic tenets of CD8+ T cell immunity are still being established. Recent work has led to the discovery of tissue-resident memory cells and refined our understanding of the transcriptional and epigenetic basis of CD8+ T cell differentiation and dysregulation. In parallel, the unprecedented clinical success of immunotherapy has galvanized an intense, global research effort to decipher and de-repress the anti-tumor response. However, the progress of immunotherapy is at a critical juncture, since the efficacy of immuno-oncology agents remains confined to a fraction of patients and often fails to provide durable benefit. Unlocking the potential of immunotherapy requires the design of strategies that both induce a potent effector response and reliably forge stable, functional memory T cell pools capable of protecting from recurrence or relapse. It is therefore essential that basic and emerging concepts of memory T cell biology are rapidly and faithfully transposed to advance therapeutic development in cancer immunotherapy. This review highlights seminal and recent reports in CD8+ T cell memory and tumor immunology, and evaluates recent data from solid cancer specimens in the context of the key paradigms from preclinical models. We elucidate the potential significance of circulating effector cells poised downstream of neoantigen recognition and upstream of T cell dysfunction and propose that cells in this immunological 'sweet spot' may be key anti-tumor effectors.
Asunto(s)
Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Inmunidad Celular , Memoria Inmunológica , Activación de Linfocitos/inmunología , Animales , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Homeostasis , Humanos , Inmunomodulación , Recuento de Linfocitos , Neoplasias/genética , Neoplasias/inmunología , Neoplasias/metabolismo , Especificidad de Órganos/inmunología , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismoRESUMEN
Advances in immune checkpoint therapy and targeted therapy have led to improvement in overall survival for patients with advanced melanoma. Single agent checkpoint PD-1 blockade and combination with BRAF/MEK targeted therapy demonstrated benefit in overall survival (OS). Superior response rates have been demonstrated with combined PD-1/CTLA-4 blockade, with a significant OS benefit compared with single-agent PD-1 blockade. Despite the progress in diagnosis of melanocytic lesions, correct classification of patients, selection of appropriate adjuvant and systemic therapies, and prediction of response to therapy remain real challenges in melanoma. Improved understanding of the tumor microenvironment, tumor immunity and response to therapy has prompted extensive translational and clinical research in melanoma. Development of novel biomarker platforms may help to improve diagnostics and predictive accuracy for selection of patients for specific treatment. There is a growing evidence that genomic and immune features of pre-treatment tumor biopsies may correlate with response in patients with melanoma and other cancers but they have yet to be fully characterized and implemented clinically. Overall, the progress in melanoma therapeutics and translational research will help to optimize treatment regimens to overcome resistance and develop robust biomarkers to guide clinical decision-making. During the Melanoma Bridge meeting (December 3rd-5th, 2020, Italy) we reviewed the currently approved systemic and local therapies for advanced melanoma and discussed novel biomarker strategies and advances in precision medicine.
Asunto(s)
Inmunoterapia , Melanoma , Humanos , Italia , Melanoma/tratamiento farmacológico , Terapia Molecular Dirigida , Microambiente TumoralRESUMEN
BACKGROUND: Urushiols are pro-electrophilic haptens that cause severe contact dermatitis mediated by CD8+ effector T-cells and downregulated by CD4+ T-cells. However, the molecular mechanism by which urushiols stimulate innate immunity in the initial stages of this allergic reaction is poorly understood. Here we explore the sub-cellular mechanisms by which urushiols initiate the allergic response. RESULTS: Electron microscopy observations of mouse ears exposed to litreol (3-n-pentadecyl-10-enyl-catechol]) showed keratinocytes containing swollen mitochondria with round electron-dense inclusion bodies in the matrix. Biochemical analyses of sub-mitochondrial fractions revealed an inhibitory effect of urushiols on electron flow through the mitochondrial respiratory chain, which requires both the aliphatic and catecholic moieties of these allergens. Moreover, urushiols extracted from poison ivy/oak (mixtures of 3-n-pentadecyl-8,11,13 enyl/3-n-heptadecyl-8,11 enyl catechol) exerted a higher inhibitory effect on mitochondrial respiration than did pentadecyl catechol or litreol, indicating that the higher number of unsaturations in the aliphatic chain, stronger the allergenicity of urushiols. Furthermore, the analysis of radioactive proteins isolated from mitochondria incubated with 3H-litreol, indicated that this urushiol was bound to cytochrome c1. According to the proximity of cytochromes c1 and b, functional evidence indicated the site of electron flow inhibition was within complex III, in between cytochromes bL (cyt b566) and bH (cyt b562). CONCLUSION: Our data provide functional and molecular evidence indicating that the interruption of the mitochondrial electron transport chain constitutes an important mechanism by which urushiols initiates the allergic response. Thus, mitochondria may constitute a source of cellular targets for generating neoantigens involved in the T-cell mediated allergy induced by urushiols.
Asunto(s)
Alérgenos , Citocromos b , Animales , Catecoles , Citocromos c , Citocromos c1 , Transporte de Electrón , Ratones , MitocondriasRESUMEN
There have been substantial strides forward in our understanding of the contribution of regulatory T (Treg) cells to cancer immunosuppression. In this issue, we present a series of papers highlighting emerging themes on this topic relevant not only to our understanding of the fundamental biology of tumour immunosuppression but also to the design of new immunotherapeutic approaches. The substantially shared biology of CD4+ conventional T (Tconv) and Treg cells necessitates a detailed understanding of the potentially opposing functional consequences that immunotherapies will have on Treg and Tconv cells, a prominent example being the potential for Treg-mediated hyperprogressive disease following anti-PD-1 therapy. Such understanding will aid patient stratification and the rational design of combination therapies. It is also becoming clear, however, that Treg cells within tumours exhibit distinct biological features to both Tconv cells and Treg cells in other tissues. These distinct features provide the opportunity for development of targeted immunotherapies with greater efficacy and reduced potential for inducing systemic toxicity.