Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nature ; 598(7880): 327-331, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34588693

RESUMEN

Haematopoiesis in the bone marrow (BM) maintains blood and immune cell production throughout postnatal life. Haematopoiesis first emerges in human BM at 11-12 weeks after conception1,2, yet almost nothing is known about how fetal BM (FBM) evolves to meet the highly specialized needs of the fetus and newborn. Here we detail the development of FBM, including stroma, using multi-omic assessment of mRNA and multiplexed protein epitope expression. We find that the full blood and immune cell repertoire is established in FBM in a short time window of 6-7 weeks early in the second trimester. FBM promotes rapid and extensive diversification of myeloid cells, with granulocytes, eosinophils and dendritic cell subsets emerging for the first time. The substantial expansion of B lymphocytes in FBM contrasts with fetal liver at the same gestational age. Haematopoietic progenitors from fetal liver, FBM and cord blood exhibit transcriptional and functional differences that contribute to tissue-specific identity and cellular diversification. Endothelial cell types form distinct vascular structures that we show are regionally compartmentalized within FBM. Finally, we reveal selective disruption of B lymphocyte, erythroid and myeloid development owing to a cell-intrinsic differentiation bias as well as extrinsic regulation through an altered microenvironment in Down syndrome (trisomy 21).


Asunto(s)
Células de la Médula Ósea/citología , Médula Ósea , Síndrome de Down/sangre , Síndrome de Down/inmunología , Feto/citología , Hematopoyesis , Sistema Inmunológico/citología , Linfocitos B/citología , Células Dendríticas/citología , Síndrome de Down/metabolismo , Síndrome de Down/patología , Células Endoteliales/patología , Eosinófilos/citología , Células Eritroides/citología , Granulocitos/citología , Humanos , Inmunidad , Células Mieloides/citología , Células del Estroma/citología
2.
Blood ; 139(23): 3387-3401, 2022 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-35073399

RESUMEN

Rare hematopoietic stem and progenitor cell (HSPC) pools outside the bone marrow (BM) contribute to blood production in stress and disease but remain ill-defined. Although nonmobilized peripheral blood (PB) is routinely sampled for clinical management, the diagnosis and monitoring potential of PB HSPCs remain untapped, as no healthy PB HSPC baseline has been reported. Here we comprehensively delineate human extramedullary HSPC compartments comparing spleen, PB, and mobilized PB to BM using single-cell RNA-sequencing and/or functional assays. We uncovered HSPC features shared by extramedullary tissues and others unique to PB. First, in contrast to actively dividing BM HSPCs, we found no evidence of substantial ongoing hematopoiesis in extramedullary tissues at steady state but report increased splenic HSPC proliferative output during stress erythropoiesis. Second, extramedullary hematopoietic stem cells/multipotent progenitors (HSCs/MPPs) from spleen, PB, and mobilized PB share a common transcriptional signature and increased abundance of lineage-primed subsets compared with BM. Third, healthy PB HSPCs display a unique bias toward erythroid-megakaryocytic differentiation. At the HSC/MPP level, this is functionally imparted by a subset of phenotypic CD71+ HSCs/MPPs, exclusively producing erythrocytes and megakaryocytes, highly abundant in PB but rare in other adult tissues. Finally, the unique erythroid-megakaryocytic-skewing of PB is perturbed with age in essential thrombocythemia and ß-thalassemia. Collectively, we identify extramedullary lineage-primed HSPC reservoirs that are nonproliferative in situ and report involvement of splenic HSPCs during demand-adapted hematopoiesis. Our data also establish aberrant composition and function of circulating HSPCs as potential clinical indicators of BM dysfunction.


Asunto(s)
Hematopoyesis , Células Madre Hematopoyéticas , Adulto , Médula Ósea , Células de la Médula Ósea/fisiología , Eritropoyesis , Humanos , Megacariocitos
3.
Science ; 381(6659): eadd7564, 2023 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-37590359

RESUMEN

The extraembryonic yolk sac (YS) ensures delivery of nutritional support and oxygen to the developing embryo but remains ill-defined in humans. We therefore assembled a comprehensive multiomic reference of the human YS from 3 to 8 postconception weeks by integrating single-cell protein and gene expression data. Beyond its recognized role as a site of hematopoiesis, we highlight roles in metabolism, coagulation, vascular development, and hematopoietic regulation. We reconstructed the emergence and decline of YS hematopoietic stem and progenitor cells from hemogenic endothelium and revealed a YS-specific accelerated route to macrophage production that seeds developing organs. The multiorgan functions of the YS are superseded as intraembryonic organs develop, effecting a multifaceted relay of vital functions as pregnancy proceeds.


Asunto(s)
Desarrollo Embrionario , Saco Vitelino , Femenino , Humanos , Embarazo , Coagulación Sanguínea/genética , Macrófagos , Saco Vitelino/citología , Saco Vitelino/metabolismo , Desarrollo Embrionario/genética , Atlas como Asunto , Expresión Génica , Perfilación de la Expresión Génica , Hematopoyesis/genética , Hígado/embriología
4.
Elife ; 102021 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-34463252

RESUMEN

The signalling pathways that maintain primed human pluripotent stem cells (hPSCs) have been well characterised, revealing a critical role for TGFß/Activin/Nodal signalling. In contrast, the signalling requirements of naive human pluripotency have not been fully established. Here, we demonstrate that TGFß signalling is required to maintain naive hPSCs. The downstream effector proteins - SMAD2/3 - bind common sites in naive and primed hPSCs, including shared pluripotency genes. In naive hPSCs, SMAD2/3 additionally bind to active regulatory regions near to naive pluripotency genes. Inhibiting TGFß signalling in naive hPSCs causes the downregulation of SMAD2/3-target genes and pluripotency exit. Single-cell analyses reveal that naive and primed hPSCs follow different transcriptional trajectories after inhibition of TGFß signalling. Primed hPSCs differentiate into neuroectoderm cells, whereas naive hPSCs transition into trophectoderm. These results establish that there is a continuum for TGFß pathway function in human pluripotency spanning a developmental window from naive to primed states.


Asunto(s)
Diferenciación Celular/fisiología , Células Madre Pluripotentes/fisiología , Transducción de Señal/fisiología , Proteína Smad2/genética , Proteína smad3/genética , Factor de Crecimiento Transformador beta/genética , Línea Celular , Reprogramación Celular , Humanos , Proteína Smad2/metabolismo , Proteína smad3/metabolismo , Factor de Crecimiento Transformador beta/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA