Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Biomed Phys Eng Express ; 10(5)2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39094595

RESUMEN

Dynamic 2-[18F] fluoro-2-deoxy-D-glucose positron emission tomography (dFDG-PET) for human brain imaging has considerable clinical potential, yet its utilization remains limited. A key challenge in the quantitative analysis of dFDG-PET is characterizing a patient-specific blood input function, traditionally reliant on invasive arterial blood sampling. This research introduces a novel approach employing non-invasive deep learning model-based computations from the internal carotid arteries (ICA) with partial volume (PV) corrections, thereby eliminating the need for invasive arterial sampling. We present an end-to-end pipeline incorporating a 3D U-Net based ICA-net for ICA segmentation, alongside a Recurrent Neural Network (RNN) based MCIF-net for the derivation of a model-corrected blood input function (MCIF) with PV corrections. The developed 3D U-Net and RNN was trained and validated using a 5-fold cross-validation approach on 50 human brain FDG PET scans. The ICA-net achieved an average Dice score of 82.18% and an Intersection over Union of 68.54% across all tested scans. Furthermore, the MCIF-net exhibited a minimal root mean squared error of 0.0052. The application of this pipeline to ground truth data for dFDG-PET brain scans resulted in the precise localization of seizure onset regions, which contributed to a successful clinical outcome, with the patient achieving a seizure-free state after treatment. These results underscore the efficacy of the ICA-net and MCIF-net deep learning pipeline in learning the ICA structure's distribution and automating MCIF computation with PV corrections. This advancement marks a significant leap in non-invasive neuroimaging.


Asunto(s)
Encéfalo , Aprendizaje Profundo , Fluorodesoxiglucosa F18 , Tomografía de Emisión de Positrones , Humanos , Tomografía de Emisión de Positrones/métodos , Encéfalo/diagnóstico por imagen , Encéfalo/irrigación sanguínea , Procesamiento de Imagen Asistido por Computador/métodos , Mapeo Encefálico/métodos , Redes Neurales de la Computación , Arteria Carótida Interna/diagnóstico por imagen , Masculino , Algoritmos , Femenino , Radiofármacos
2.
J Neurosurg ; 140(6): 1799-1809, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38157521

RESUMEN

OBJECTIVE: Medial thalamotomy has been shown to benefit patients with neuropathic pain, but widespread adoption of this procedure has been limited by reporting of clinical outcomes in studies without a control group. This study aimed to minimize confounders associated with medial thalamotomy for treating chronic pain by using modern MRI-guided stereotactic lesioning and a rigorous clinical design. METHODS: This prospective, double-blinded, randomized controlled trial in 10 patients with trigeminal neuropathic pain used sham procedures as controls. Participants underwent assessments by a pain psychologist and pain management clinician, including use of the following measures: the Numeric Pain Rating Scale (NPRS); patient-reported outcome measures; and patient's impression of improvement at baseline, 1 day, 1 week, 1 month, and 3 months postprocedure. Patients in the treated group underwent bilateral focused ultrasound (FUS) medial thalamotomy targeting the central lateral nucleus. Patients in the control group underwent sham procedures with energy output disabled. The primary efficacy outcome measure was between-group differences in pain intensity (using the NPRS) at baseline and at 3 months postprocedure. Adverse events were measured for safety and included MRI analysis. Exploratory measures of connectivity and metabolism were analyzed using diffusion tensor imaging, functional MRI, and PET, respectively. RESULTS: There were no serious complications from the FUS procedures. MRI confirmed bilateral medial thalamic ablations. There was no significant improvement in pain intensity from baseline to 3 months, either for patients undergoing FUS medial thalamotomy or for sham controls; and the between-group change in NPRS score as the primary efficacy outcome measure was not significantly different. Patient-reported outcome assessments demonstrated improvement (i.e., a decrease) only in pain interference with enjoyment of life at 3 months. There was a perception of benefit at 1 week, but only for patients treated with FUS and not for the sham cohort. Advanced neuroimaging showed that these medial thalamic lesions altered structural connectivity with the postcentral gyrus and demonstrated a trend toward hypometabolism in the insula and amygdala. CONCLUSIONS: This randomized controlled trial of bilateral FUS medial thalamotomy did not reduce the intensity of trigeminal neuropathic pain, although it should be noted that the ability to estimate the magnitude of treatment effects is limited by the small cohort.


Asunto(s)
Tálamo , Neuralgia del Trigémino , Humanos , Masculino , Femenino , Neuralgia del Trigémino/cirugía , Neuralgia del Trigémino/diagnóstico por imagen , Persona de Mediana Edad , Método Doble Ciego , Anciano , Tálamo/cirugía , Tálamo/diagnóstico por imagen , Estudios Prospectivos , Resultado del Tratamiento , Dimensión del Dolor , Adulto , Imagen por Resonancia Magnética , Medición de Resultados Informados por el Paciente
3.
J Nucl Med ; 64(5): 809-815, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36522188

RESUMEN

Infectious disease remains the main cause of morbidity and mortality throughout the world. Of growing concern is the rising incidence of multidrug-resistant bacteria, derived from various selection pressures. Many of these bacterial infections are hospital-acquired and have prompted the Centers for Disease Control and Prevention in 2019 to reclassify several pathogens as urgent threats, its most perilous assignment. Consequently, there is an urgent need to improve the clinical management of bacterial infection via new methods to specifically identify bacteria and monitor antibiotic efficacy in vivo. In this work, we developed a novel radiopharmaceutical, 2-18F-fluoro-2-deoxy-mannitol (18F-fluoromannitol), which we found to specifically accumulate in both gram-positive and gram-negative bacteria but not in mammalian cells in vitro or in vivo. Methods: Clinical isolates of bacteria were serially obtained from wounds of combat service members for all in vitro and in vivo studies. Bacterial infection was quantified in vivo using PET/CT, and infected tissue was excised to confirm radioactivity counts ex vivo. We used these same tissues to confirm the presence of bacteria by extracting and correlating radioactive counts with colony-forming units of bacteria. Results: 18F-fluoromannitol was able to differentiate sterile inflammation from Staphylococcus aureus and Escherichia coli infections in vivo in a murine myositis model using PET imaging. Our study was extended to a laceration wound model infected with Acinetobacter baumannii, an important pathogen in the nosocomial and battlefield setting. 18F-fluoromannitol PET rapidly and specifically detected infections caused by A. baumannii and several other important pathogens (Enterococcus faecium, S. aureus, Klebsiella pneumoniae, A. baumannii, Pseudomonas aeruginosa, and Enterobacter spp.). Importantly, 18F-fluoromannitol PET was able to monitor the therapeutic efficacy of vancomycin against S. aureus in vivo. Conclusion: The ease of production of 18F-fluoromannitol is anticipated to facilitate wide radiopharmaceutical dissemination. Furthermore, the broad sensitivity of 18F-fluoromannitol for bacterial infection in vivo suggests that it is an ideal imaging agent for clinical translation to detect and monitor infections and warrants further studies in the clinical setting.


Asunto(s)
Infecciones Estafilocócicas , Staphylococcus aureus , Ratones , Animales , Antibacterianos/uso terapéutico , Bacterias Gramnegativas , Tomografía Computarizada por Tomografía de Emisión de Positrones , Radiofármacos , Bacterias Grampositivas , Bacterias , Infecciones Estafilocócicas/diagnóstico por imagen , Infecciones Estafilocócicas/tratamiento farmacológico , Tomografía de Emisión de Positrones , Mamíferos
4.
J Am Heart Assoc ; 12(10): e026950, 2023 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-37183873

RESUMEN

Background Cardiac metabolic abnormalities are present in heart failure. Few studies have followed metabolic changes accompanying diastolic and systolic heart failure in the same model. We examined metabolic changes during the development of diastolic and severe systolic dysfunction in spontaneously hypertensive rats (SHR). Methods and Results We serially measured myocardial glucose uptake rates with dynamic 2-[18F] fluoro-2-deoxy-d-glucose positron emission tomography in vivo in 9-, 12-, and 18-month-old SHR and Wistar Kyoto rats. Cardiac magnetic resonance imaging determined systolic function (ejection fraction) and diastolic function (isovolumetric relaxation time) and left ventricular mass in the same rats. Cardiac metabolomics was performed at 12 and 18 months in separate rats. At 12 months, SHR hearts, compared with Wistar Kyoto hearts, demonstrated increased isovolumetric relaxation time and slightly reduced ejection fraction indicating diastolic and mild systolic dysfunction, respectively, and higher (versus 9-month-old SHR decreasing) 2-[18F] fluoro-2-deoxy-d-glucose uptake rates (Ki). At 18 months, only few SHR hearts maintained similar abnormalities as 12-month-old SHR, while most exhibited severe systolic dysfunction, worsening diastolic function, and markedly reduced 2-[18F] fluoro-2-deoxy-d-glucose uptake rates. Left ventricular mass normalized to body weight was elevated in SHR, more pronounced with severe systolic dysfunction. Cardiac metabolite changes differed between SHR hearts at 12 and 18 months, indicating progressive defects in fatty acid, glucose, branched chain amino acid, and ketone body metabolism. Conclusions Diastolic and severe systolic dysfunction in SHR are associated with decreasing cardiac glucose uptake, and progressive abnormalities in metabolite profiles. Whether and which metabolic changes trigger progressive heart failure needs to be established.


Asunto(s)
Insuficiencia Cardíaca , Hipertensión , Ratas , Animales , Ratas Endogámicas SHR , Tomografía Computarizada por Rayos X , Ratas Endogámicas WKY , Glucosa , Desoxiglucosa , Presión Sanguínea
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA