Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Nutr ; 152(1): 117-129, 2022 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-34610138

RESUMEN

BACKGROUND: Leucine has unique anabolic properties, serving as a nutrient signal that stimulates muscle protein synthesis. OBJECTIVE: We tested whether the leucine concentration is the only factor determining protein quality for muscle development. METHODS: We selected 3 dietary proteins: casein (CAS), egg white protein (EWP), and albumin (ALB), representing the leucine concentrations of ∼8.3%, 7.7%, and 6.7% of the total protein (wt:wt), respectively. In the chronic feeding experiment, these proteins were pair-fed to growing male Wistar rats [110-135 g body weight (BW)] for 14 d as a protein source, providing 10% of total energy intake, after which soleus and extensor digitorum longus (EDL) muscles were used to estimate muscle growth. In the acute administration experiment, we injected CAS, ALB, and EWP to rats by oral gavage (0.3 g protein/100 g BW), and after 1 or 3 h EDL muscle was excised for capillary electrophoresis-MS-based metabolomics. In another chronic feeding experiment, rats were pair-fed either CAS or a CAS diet supplemented with arginine to the same level as in the EWP diet for 14 d. RESULTS: At the end of the 14-d feeding, soleus and EDL muscle weight was 20% and 17% higher, respectively, when rats were fed EWP as compared with CAS (P < 0.05). In addition, the 14-d EWP diet increased the expression of p70S6K by 117% compared with CAS (P < 0.05). These results suggest the possibility that some amino acids (excluding leucine), derived from EWP, promote muscle growth. Metabolomics analysis showed that muscle arginine concentration, following acute protein administration, appeared to match muscle growth over the 14-d feeding period. In addition, 14-d arginine supplementation to a CAS diet increased EDL muscle weight by 15% when compared with the plain CAS diet (P < 0.05). CONCLUSIONS: EWP promotes rat developmental muscle growth compared with CAS, which can be partly explained by the arginine-rich EWP.


Asunto(s)
Proteínas Musculares , Roedores , Animales , Proteínas del Huevo , Leucina/metabolismo , Masculino , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Ratas , Ratas Wistar , Roedores/metabolismo
2.
FASEB J ; 35(8): e21767, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34325488

RESUMEN

Running exercise has beneficial effects on brain health. However, the effects of relatively short-term running exercise (STEx) on behavior, and its underlying signaling pathways, are poorly understood. In this study, we evaluated the possibility that the regulation by STEx of brain-derived neurotrophic factor (BDNF) and neuronal nitric oxide synthase (nNOS, encoded by NOS1), which are important molecules for anxiety regulation, might involve mechanisms of epigenetic modification, such as DNA methylation. C57BL/6J male mice were divided into sedentary (SED, n = 12) and STEx (EX, n = 15) groups; STEx was conducted with the mice for a duration of 11 days. STEx reduced anxiety-like behaviors, and STEx reduced Nos1α and increased Bdnf exon I and IV mRNA levels in the hippocampus. Interestingly, behavioral parameters were associated with Bdnf exon I and IV and Nos1α mRNA levels in the ventral, but not dorsal, hippocampal region. However, STEx had no effect on peroxisome proliferator-activated receptor-γ coactivator 1α (Pgc-1α) or fibronectin type III domain-containing 5 (Fndc5) mRNA levels, which are relatively long-term exercise-induced upstream regulators of BDNF. In parallel with gene expression changes, we found, for the first time, that STEx downregulated Bdnf promoter IV and upregulated Nos1 DNA methylation levels in the hippocampus, and these patterns were partially different between the dorsal and ventral regions. These findings suggest that the beneficial effects of running exercise on mood regulation may be controlled by alterations in epigenetic mechanisms, especially in the ventral hippocampus. These effects occur even after a relatively short-term period of exercise.


Asunto(s)
Ansiedad/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Hipocampo/metabolismo , Óxido Nítrico Sintasa de Tipo I/metabolismo , Condicionamiento Físico Animal/fisiología , Carrera/fisiología , Tejido Adiposo , Animales , Conducta Animal , Composición Corporal , Peso Corporal , Factor Neurotrófico Derivado del Encéfalo/genética , Metilación de ADN , Fibronectinas/genética , Fibronectinas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Óxido Nítrico Sintasa de Tipo I/genética , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Distribución Aleatoria , Factores de Tiempo
3.
Amino Acids ; 54(2): 251-260, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35122528

RESUMEN

Taurine enhances physical performance; however, the underlying mechanism remains unclear. This study examined the effect of taurine on the overtime dynamics of blood glucose concentration (BGC) during endurance exercise in rats. Male F344 rats were subjected to transient treadmill exercise until exhaustion following 3 weeks of taurine supplementation or non-supplementation (TAU and CON groups). Every 10 min during exercise, BGC was measured in blood collected through cannulation of the jugular vein. Gluconeogenesis-, lipolysis-, and fatty acid oxidation-related factors in the plasma, liver, and skeletal muscles were also analyzed after 120-min run. Exercise time to exhaustion was significantly longer with taurine supplementation. BGC in the two groups significantly increased by 40 min and gradually and significantly decreased toward the respective exhaustion point. The decline in BGC from the peak at 40 min was significantly slower in the TAU group. The time when the once-increased BGC regressed to the 0-time level was significantly and positively correlated with exercise time until exhaustion. At the 120-min point, where the difference in BGC between the two groups was most significant, plasma free fatty acid concentration and acetyl-carnitine and N-acetyltaurine concentrations in skeletal muscle were significantly higher in the TAU group, whereas glycogen and glucogenic amino acid concentrations and G6Pase activity in the liver were not different between the two groups. Taurine supplementation enhances endurance capacity by delaying the decrease in BGC toward exhaustion through increases of lipolysis in adipose tissues and fatty acid oxidation in skeletal muscles during endurance exercise.


Asunto(s)
Glucemia , Resistencia Física , Animales , Glucemia/metabolismo , Suplementos Dietéticos , Masculino , Músculo Esquelético/metabolismo , Ratas , Ratas Endogámicas F344 , Taurina/metabolismo , Taurina/farmacología
4.
Adv Exp Med Biol ; 1370: 305-309, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35882805

RESUMEN

Diabetes is so common in Japan as to be called a national disease. Taurine, a free amino acid found abundantly in mammalian tissues that is also a key ingredient of many "energy drinks," has been shown to be effective in improving the hyperglycemic state caused by diabetes. Taurine administration is associated with increased insulin secretion from the pancreas, higher levels of insulin signaling-related factors, and higher expression of the glucose transporter, GLUT4. Skeletal muscle is the main target organ of insulin: Via cell surface GLUT4 molecules, myocytes take up blood glucose, enabling skeletal muscle contraction. The enhancing effect of taurine on blood glucose uptake in skeletal muscle has not been fully studied, and little is known about its mechanism. This review article summarizes what is known about the effects of taurine on insulin secretion from the pancreas and especially blood glucose uptake in skeletal muscle.


Asunto(s)
Insulina , Taurina , Animales , Transporte Biológico , Glucemia/metabolismo , Glucosa/metabolismo , Insulina/metabolismo , Mamíferos/metabolismo , Contracción Muscular , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Taurina/metabolismo , Taurina/farmacología
5.
J Exerc Sci Fit ; 18(3): 115-121, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32351588

RESUMEN

BACKGROUND/OBJECTIVE: Muscle soreness and damage occurs after completing a full marathon. Here we refer to muscle soreness induced by prolonged running as early-onset muscle soreness (EOMS) because muscle soreness and damage markers induced after prolonged running are different from delayed-onset muscle soreness (DOMS) and muscle damage markers induced after eccentric contraction, such as resistance exercise. The dynamics and relationship between muscle damage markers and EOMS are unclear; therefore, in this study, we aimed to elucidate the relationship between EOMS and indirect muscle damage markers, and their dynamics after a full marathon. METHODS: The following measurements were performed in 19 subjects who completed a full marathon: perceived muscle soreness (using a numeric rating scale), thigh circumference (CIR), hip joint range of motion (ROM), jump height (JH) and muscle damage marker activities in the blood (CK, AST, LDH, ALD) before (Pre), after (Post) and every day for 4 days after a full marathon (D1-4). RESULTS: EOMS was induced, as determined by the numeric rating scale score peaking immediately after a full marathon. ROM and JH significantly decreased and all muscle damage markers significantly increased after a full marathon. Serum CK and AST peaked at D1. Serum LDH and ALD peaked at Post and D3. Each marker showed different dynamics. CIR significantly decreased after a full marathon. CONCLUSION: Muscle soreness peaked and muscle damage markers in the blood showed different dynamics after a full marathon. In other words, this is different from DOMS.

6.
Adv Exp Med Biol ; 1155: 407-414, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31468418

RESUMEN

High-intensity resistance exercise has been shown to increase arterial stiffness and reduce vascular endothelial function. Taurine supplementation has a favorable effect on maintaining vascular function. We had previously reported that taurine supplementation attenuated increases in resistance exercise-induced arterial stiffness. In the present study, we further investigate the effects of taurine supplementation on vascular endothelial function at rest and after resistance exercise.Twenty-nine healthy men were recruited and randomly assigned to either the placebo supplement group (n = 14) or the taurine supplement group (n = 15) in a double-blinded manner. Subjects were required to ingest 6 g of either a placebo or the taurine supplement for 2 weeks prior to and 3 days following the exercise. Two weeks after the commencement of supplementation, the subjects were asked to perform 2 sets of 20 repetitive unilateral maximal-effort resistance exercise of the elbow flexors on a Biodex isokinetic dynamometer, with each contraction lasting 3 s, with 1 repetition performed every 9 s and 4 min rest in between sets. We evaluated the changes in brachial artery flow-mediated dilation (FMD) in the non-exercised arm as an index of vascular endothelial function. Relative and absolute FMDs were measured prior to supplementation, before exercise, and 24, 48, and 96 h after exercise.Two weeks of taurine supplementation significantly increased both relative and absolute FMDs. Baseline diameter significantly increased at 96 h following the exercise in both groups. However, there was no change in the peak diameter. Consequently, both relative and absolute FMDs were significantly reduced at 96 h after the exercise in both groups. Taurine supplementation does not affect resistance exercise-induced reduction in FMD.Two weeks of taurine supplementation (6 g/day) significantly increased vascular endothelial function at rest; however, taurine supplementation did not improve resistance exercise-induced reduction in FMD.


Asunto(s)
Suplementos Dietéticos , Endotelio Vascular/efectos de los fármacos , Entrenamiento de Fuerza , Taurina/farmacología , Vasodilatación , Arteria Braquial , Endotelio Vascular/fisiología , Humanos , Masculino
7.
Clin Exp Nephrol ; 21(5): 810-817, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28197733

RESUMEN

BACKGROUND: The underlying mechanism linking the decline in exercise capacity with renal dysfunction remains unclear. Urinary liver-type fatty acid-binding protein (L-FABP) levels reflect the degree of peritubular capillary blood flow, an important factor for renal dysfunction with aging. The aim of this study was to examine the relationship between exercise capacity and urinary L-FABP levels. METHODS: This was a cross-sectional study of 187 middle-aged and older individuals (aged 50-83 years) without chronic kidney disease (CKD). We assessed urinary L-FABP levels, peak oxygen consumption ([Formula: see text]), and grip strength. RESULTS: Urinary L-FABP levels inversely correlated with both [Formula: see text] (r s = -0.349) and grip strength (r s = -0.485). When the participants were divided into four groups according to the median values of aerobic fitness and muscular strength ([Formula: see text] and grip strength), urinary L-FABP levels were the highest in participants with lower levels of aerobic fitness and muscular strength (2.95 ± 1.43 µg/g creatinine) and the lowest in the participants with higher levels of aerobic fitness and muscular strength (1.33 ± 0.76 µg/g creatinine). The difference between the two groups was significant (P < 0.001). CONCLUSION: Our results demonstrate that both [Formula: see text] and grip strength were inversely associated with urinary L-FABP levels in middle-aged and older individuals without CKD. This suggests that a decline in exercise capacity is associated with a reduction in peritubular capillary blood flow, providing a novel insight into the underlying mechanism linking the decline in exercise capacity to the development of renal dysfunction.


Asunto(s)
Tolerancia al Ejercicio , Proteínas de Unión a Ácidos Grasos/orina , Enfermedades Renales/etiología , Riñón/irrigación sanguínea , Factores de Edad , Anciano , Anciano de 80 o más Años , Envejecimiento/orina , Biomarcadores/orina , Capilares/fisiopatología , Estudios Transversales , Femenino , Fuerza de la Mano , Estado de Salud , Humanos , Enfermedades Renales/diagnóstico , Enfermedades Renales/fisiopatología , Enfermedades Renales/orina , Masculino , Persona de Mediana Edad , Consumo de Oxígeno , Circulación Renal , Factores de Riesgo , Factores de Tiempo
8.
Adv Exp Med Biol ; 975 Pt 1: 403-411, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28849471

RESUMEN

Taurine is metabolized to a novel metabolite, N-acetyltaurine (NAT), through N-acetylation with acetate. Furthermore, NAT production increases when the endogenous production of acetate is elevated in some situations, such as alcohol catabolism and endurance exercise. We have previously reported that both the serum concentration and urinary excretion of NAT from humans were increased after endurance exercise, and that NAT was secreted by cultured skeletal muscle cells exposed to both acetate and taurine. The present study evaluated the hypothesis that NAT is synthesized in the skeletal muscle after endurance exercise. Normal rats were loaded to a transient treadmill running until exhaustion. Serum, skeletal muscle, and liver were collected immediately after the exercise. The NAT concentration in the plasma and in the soleus muscle from the exercised rats was significantly increased compared to that in the samples from the sedentary control rats. There was a significant positive correlation in the NAT concentration between the plasma and soleus muscle. The NAT concentration in the liver was unchanged after the endurance exercise. These results confirm that the significantly increased NAT in both the serum and urine after endurance exercise is derived from NAT synthesis in the skeletal muscle.


Asunto(s)
Músculo Esquelético/metabolismo , Condicionamiento Físico Animal/fisiología , Resistencia Física/fisiología , Taurina/análogos & derivados , Animales , Masculino , Ratas , Ratas Endogámicas F344 , Taurina/metabolismo
9.
J Strength Cond Res ; 30(8): 2279-85, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24832967

RESUMEN

Choi, Y, Akazawa, N, Zempo-Miyaki, A, Ra, S-G, Shiraki, H, Ajisaka, R, and Maeda, S. Acute effect of high-intensity eccentric exercise on vascular endothelial function in young men. J Strength Cond Res 30(8): 2279-2285, 2016-Increased central arterial stiffness is as an independent risk factor for cardiovascular disease. Evidence regarding the effects of high-intensity resistance exercise on vascular endothelial function and central arterial stiffness is conflicting. The purpose of this study was to examine the effects of acute high-intensity eccentric exercise on vascular endothelial function and central arterial stiffness. We evaluated the acute changes in endothelium-dependent flow-mediated dilation (FMD), low-flow-mediated constriction (L-FMC), and arterial stiffness after high-intensity eccentric exercise. Seven healthy, sedentary men (age, 24 ± 1 year) performed maximal eccentric elbow flexor exercise using their nondominant arm. Before and 45 minutes after eccentric exercise, carotid arterial compliance and brachial artery FMD and L-FMC in the nonexercised arm were measured. Carotid arterial compliance was significantly decreased, and ß-stiffness index significantly increased after eccentric exercise. Brachial FMD was significantly reduced after eccentric exercise, whereas there was no significant difference in brachial L-FMC before and after eccentric exercise. A positive correlation was detected between change in arterial compliance and change in FMD (r = 0.779; p ≤ 0.05), and a negative correlation was detected between change in ß-stiffness index and change in FMD (r = -0.891; p < 0.01) with eccentric exercise. In this study, acute high-intensity eccentric exercise increased central arterial stiffness; this increase was accompanied by a decrease in endothelial function caused by reduced endothelium-dependent vasodilation but not by a change in endothelium-dependent vasoconstriction.


Asunto(s)
Arterias/fisiología , Endotelio Vascular/fisiología , Terapia por Ejercicio/métodos , Entrenamiento de Fuerza/métodos , Rigidez Vascular/fisiología , Adulto , Arterias/diagnóstico por imagen , Humanos , Masculino , Factores de Riesgo , Vasodilatación , Adulto Joven
10.
Eur J Appl Physiol ; 115(9): 1949-57, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25921600

RESUMEN

PURPOSE: Polyphenolic curcumin is known to have potent anti-inflammatory effects; thus the present study investigated the hypothesis that curcumin ingestion would attenuate muscle damage after eccentric exercise. METHODS: Fourteen untrained young men (24 ± 1 years) performed 50 maximal isokinetic (120°/s) eccentric contractions of the elbow flexors of one arm on an isokinetic dynamometer and the same exercise with the other arm 4 weeks later. They took 150 mg of curcumin (theracurmin) or placebo (starch) orally before and 12 h after each eccentric exercise bout in a randomised, crossover design. Maximal voluntary contraction (MVC) torque of the elbow flexors, range of motion of the elbow joint, upper-arm circumference, muscle soreness, serum creatine kinase (CK) activity, and plasma interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) concentration were measured before, immediately after, and 24, 48, 72 and 96 h after each eccentric exercise. Changes in these variables over time were compared between curcumin and placebo conditions by two-way repeated measures ANOVA. RESULTS: MVC torque decreased smaller and recovered faster (e.g., 4 days post-exercise: -31 ± 13 % vs. -15 ± 15 %), and peak serum CK activity was smaller (peak: 7684 ± 8959 IU/L vs. 3398 ± 3562 IU/L) for curcumin than placebo condition (P < 0.05). However, no significant differences between conditions were evident for other variables, and no significant changes in IL-6 and TNF-α were evident after exercise. CONCLUSION: It is concluded that theracurmin ingestion attenuates some aspects of muscle damage such as MVC loss and CK activity increase.


Asunto(s)
Trastornos de Traumas Acumulados/prevención & control , Curcumina/administración & dosificación , Citocinas/inmunología , Ejercicio Físico , Músculo Esquelético/inmunología , Músculo Esquelético/lesiones , Administración Oral , Antiinflamatorios no Esteroideos/administración & dosificación , Estudios Cruzados , Trastornos de Traumas Acumulados/inmunología , Citocinas/sangre , Suplementos Dietéticos , Humanos , Masculino , Músculo Esquelético/efectos de los fármacos , Resultado del Tratamiento , Adulto Joven
11.
Am J Physiol Heart Circ Physiol ; 306(3): H348-55, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24322608

RESUMEN

The Klotho gene is a suppressor of the aging phenomena, and the secretion as well as the circulation of Klotho proteins decrease with aging. Although habitual exercise has antiaging effects (e.g., a decrease in arterial stiffness), the relationship between Klotho and habitual exercise remains unclear. In the present study, we investigated the effect of habitual exercise on Klotho, with a particular focus on arterial stiffness. First, we examined the correlation between plasma Klotho concentration and arterial stiffness (carotid artery compliance and ß-stiffness index) or aerobic exercise capacity [oxygen uptake at ventilatory threshold (VT)] in 69 healthy, postmenopausal women (50-76 years old) by conducting a cross-sectional study. Second, we tested the effects of aerobic exercise training on plasma Klotho concentrations and arterial stiffness. A total of 19 healthy, postmenopausal women (50-76 years old) were divided into two groups: control group and exercise group. The exercise group completed 12 wk of moderate aerobic exercise training. In the cross-sectional study, plasma Klotho concentrations positively correlated with carotid artery compliance and VT and negatively correlated with the ß-stiffness index. In the interventional study, aerobic exercise training increased plasma Klotho concentrations and carotid artery compliance and decreased the ß-stiffness index. Moreover, the changes in plasma Klotho concentration and arterial stiffness were found to be correlated. These results suggest a possible role for secreted Klotho in the exercise-induced modulation of arterial stiffness.


Asunto(s)
Ejercicio Físico , Glucuronidasa/sangre , Posmenopausia/fisiología , Rigidez Vascular , Anciano , Presión Sanguínea , Estudios de Casos y Controles , Estudios Transversales , Femenino , Humanos , Proteínas Klotho , Persona de Mediana Edad , Consumo de Oxígeno , Posmenopausia/sangre
12.
Adv Exp Med Biol ; 776: 179-87, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23392882

RESUMEN

Taurine (TAU) has a lot of the biological, physiological, and pharmocological functions including anti-inflammatory and anti-oxidative stress. Although previous studies have appreciated the effectiveness of branched-chain amino acids (BCAA) on the delayed-onset muscle soreness (DOMS), consistent finding has not still convinced. The aim of this study was to examine the additional effect of TAU with BCAA on the DOMS and muscle damages after eccentric exercise. Thirty-six untrained male volunteers were equally divided into four groups, and ingested a combination with 2.0 g TAU (or placebo) and 3.2 g BCAA (or placebo), thrice a day, 2 weeks prior to and 4 days after elbow flexion eccentric exercise. Following the period after eccentric exercise, the physiological and blood biochemical markers for DOMS and muscle damage showed improvement in the combination of TAU and BCAA supplementation rather than in the single or placebo supplementations. In conclusion, additional supplement of TAU with BCAA would be a useful way to attenuate DOMS and muscle damages induced by high-intensity exercise.


Asunto(s)
Aminoácidos de Cadena Ramificada/uso terapéutico , Ejercicio Físico , Conducta Alimentaria , Debilidad Muscular/tratamiento farmacológico , Músculo Esquelético/patología , Taurina/uso terapéutico , Aminoácidos de Cadena Ramificada/administración & dosificación , Aminoácidos de Cadena Ramificada/farmacología , Área Bajo la Curva , Biomarcadores/sangre , Conducta Alimentaria/efectos de los fármacos , Humanos , L-Lactato Deshidrogenasa/sangre , Masculino , Debilidad Muscular/sangre , Debilidad Muscular/enzimología , Músculo Esquelético/efectos de los fármacos , Dimensión del Dolor , Taurina/administración & dosificación , Taurina/farmacología , Adulto Joven
13.
Eur J Sport Sci ; 23(1): 92-100, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34974818

RESUMEN

Both eccentric (ECC) and concentric (CON) exercises improve energy expenditure and blood lipid profile. Although ECC exercise has a more beneficial effect on these factors than CON exercise, its benefits on vital organs are still unclear. This study investigated the mode-of-action-dependent effects on myocardial perfusion index. Seventeen healthy men (age: 26 ± 5 years) were randomly enrolled in CON (n = 9) and ECC (n = 8) groups. Transient exercise and regular training (three-day a week for 4-week) included bicep curl comprising 5-set of 10-repetition, each using 75% one-repetition maximum concentric loading. The ECC group performed one-repetition of ECC for 3-s and CON for 1-s, while the CON group performed one-repetition of CON for 3-s and ECC for 1-s. All participants were assessed for subendocardial viability ratio (SEVR, myocardial perfusion index) and aortic diastolic pressure decay. Before study, these were found to be same for both groups. Transient (ΔSEVR: 20.3 ± 13.3%, p = 0.01; Δdecay: -0.07 ± 0.02 s-1, p < .001) and regular (ΔSEVR: 18.5 ± 12.8%, p = .001; Δdecay: -0.06 ± 0.05 s-1, p = .004) ECC (but not CON) exercises significantly increased SEVR and decelerated decay. Increased SEVR with ECC exercise was associated with decelerated decay (transient ECC: r2 = 0.56, 95% confidence interval [CI] = -0.95 to -0.10, p = .03; regular ECC: r2 = 0.53, 95% CI = -0.95 to -0.05, p = .04). These findings suggest that ECC exercise improves myocardial perfusion and diastolic pressure contour is involved in physiological mechanisms.


Asunto(s)
Terapia por Ejercicio , Ejercicio Físico , Adulto , Humanos , Masculino , Adulto Joven , Presión Sanguínea , Ejercicio Físico/fisiología , Contracción Muscular , Músculo Esquelético/fisiología , Miocardio
14.
Phys Act Nutr ; 27(2): 34-38, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37583070

RESUMEN

PURPOSE: Curcumin, a major component of turmeric, has anti-inflammatory and antioxidative properties, which are associated with protective effects against muscle damage. This study examined the effects of dietary curcumin on inflammation and muscle damage in female competitive soccer players. METHODS: A single-blinded, placebo-controlled, nonrandomized, crossover pilot study was conducted. Six competitive female soccer players (20.0 ± 2.0 yearsold) who participated in a 2-week preseason training program were assigned to two conditions: placebo and curcumin. The participants ingested a placebo or curcumin dosage (270 mg/day) during 2 weeks of preseason training, with 1 week of washout. Fasting blood samples were collected under resting conditions before (day 0) and after (day 15) the training period to examine changes in the concentration of interleukin 6 (IL-6), an inflammatory marker, and indices reflective of muscle damage. RESULTS: Curcumin decreased the concentration of IL-6 released (mean decrease, -30.2 ± 28.1%), whereas no decrease was observed in the placebo condition (13.4 ± 17.4%). Changes in plasma IL-6 concentrations were significantly greater in the curcumin condition than in the placebo condition (p < 0.05). However, curcumin supplementation had no significant effects on muscle damage indices. CONCLUSION: The present study shows that curcumin supplementation could attenuate inflammation, as indicated by IL-6 concentrations, in competitive female soccer players during the training period.

15.
Eur J Sport Sci ; 22(7): 1104-1112, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33673788

RESUMEN

Reports have indicated that high-intensity resistance training (RT) increases or does not change arterial stiffness. Meanwhile, higher stature has been suggested to have a protective effect on cardiovascular disease and arterial stiffness. Stature could explain the disagreement in the reported effects of RT on arterial stiffness. This study was aimed at investigating whether stature is related to RT-induced change in arterial stiffness. Thirty-six young Japanese men were assigned to the control (n = 15) and training groups (n = 21). RT programme consisted of supervised bicep curls 3 days per week for 4 weeks (5 sets of 10 repetitions at 75% of 1-repetition maximum). Arterial compliance (AC) and ß-stiffness index (via combination of ultrasound and carotid pressure waveforms) were measured in all participants. To verify the effect of stature on RT-induced change in arterial stiffness, the training group was divided into tertiles of stature: lower, middle, and higher stature groups (each group, n = 7). RT significantly decreased AC and increased ß-stiffness index in only the lower stature group (both, P < 0.05). Moreover, stature was positively associated with decreased AC and negatively associated with increased ß-stiffness index, even after adjusting for confounders including changes in relative strength, pulse pressure, and arterial distension (P < 0.05). The present results suggest that short stature contributes to the increase in arterial stiffness induced by RT in young Japanese men. The present findings suggest that stature should be taken into consideration when designing/engaging in RT programme, due to potential implications for cardiovascular health. HighlightsParticipants were divided into 3 groups according to tertiles of statures, and arterial stiffness of lower stature group (range of stature: 161.0-169.8 cm) increased after resistance training in young Japanese men, but not middle and higher stature group.Stature was negatively associated with the changed arterial stiffness by resistance training.This study suggests that short stature contributes to the elevation in arterial stiffness elicited by resistance training.


Asunto(s)
Entrenamiento de Fuerza , Rigidez Vascular , Presión Sanguínea , Arterias Carótidas , Humanos , Japón , Masculino , Músculo Esquelético , Entrenamiento de Fuerza/métodos
16.
J Nutr Sci Vitaminol (Tokyo) ; 68(4): 243-249, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36047095

RESUMEN

We examined the effects of dietary vitamin D deficiency on markers of mitochondrial biogenesis and dynamics in rat soleus muscle. Male Wistar rats were fed a chow with no vitamin D (No-D; 0 IU/kg) or a moderate dose (Mod-D; 2,000 IU/kg) of vitamin D chow for 8 wk. Compared to the Mod-D group, at 8 wk the No-D group showed significantly lower serum 25(OH)D levels. Although vitamin D deficiency had no effect on body composition, the No-D rats showed significantly decreased levels of PGC-1α, a marker of skeletal muscle mitochondrial biogenesis, and DRP1, a marker of skeletal muscle mitochondrial fission. The change in the PGC-1α protein expression and the serum 25(OH)D concentrations were significantly correlated. The change in DRP1 protein expression and the serum 25(OH)D concentrations tended to be correlated. There was no significant between-group difference in markers of mitochondrial fusion (MFN2 and OPA1) and mitophagy (PARKIN) in soleus muscle, and no relationship with serum 25(OH)D concentrations. Collectively our findings suggest that dietary vitamin D deficiency decreased PGC-1α and DRP1 protein expression in rat soleus muscle.


Asunto(s)
Biogénesis de Organelos , Deficiencia de Vitamina D , Animales , Masculino , Dinámicas Mitocondriales , Músculo Esquelético/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Ratas , Ratas Wistar , Deficiencia de Vitamina D/complicaciones , Deficiencia de Vitamina D/metabolismo
17.
J Sports Sci Med ; 10(2): 306-14, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-24149876

RESUMEN

Taurine included abundantly in skeletal muscle, particularly in the slow-twitch fibers, enhances exercise performance. However, the exact mechanisms for this effect have been unclear. The present study investigated the influence of taurine supplementation on amino acids profile in skeletal muscles as one of mechanisms in the enhancement of exercise performance induced by taurine. In the rats that received taurine solution, amino acids concentrations were comprehensively quantified in two portions with different fiber compositions in the fast-twitch fiber dominant (FFD) gastrocnemius muscle after 2 weeks, and in the gastrocnemius and additional other FFD muscles, liver, and plasma with exhausted exercise after 3 weeks. In the FFD muscles after 2 weeks, a common phenomenon that decreased concentrations of threonine (-16%), serine (-15~-16%), and glycine (-6~-16%) were observed, and they are categorized in the pyruvate precursors for hepatic gluconeogenesis rather than biosynthesis, polar, and side-chain structures. The decreases in the three amino acids were significantly emphasized after an additional week of taurine supplementation in the FFD muscles (p values in three amino acids in these tissues were less than 0.001-0.05), but not in the liver and plasma, accompanied with significantly increase of running time to exhaustion (p <0.05). In contrast, the three amino acids (threonine and serine; p < 0.05, glycine; p < 0.01) and alanine (p < 0.01) in the liver were significantly decreased and increased, respectively, following the exhaustive exercise. In conclusion, the taurine-induced reductions of these amino acids in skeletal muscle might be one of the mechanisms which underpin the enhancement of exercise performance by taurine. Key pointsTaurine ingestion significantly decreased certain amino acids in skeletal muscles accompanied with enhanced exercise performance.The decreased amino acids in common were threonine, serine, and glycine, but not alanine; pyruvate precursor for gluconeogenesis.The alteration of three amino acids in muscles was maintained after exhausted exercise.The muscular alterations of them might be one of taurine-induced roles on exercise performance.

18.
Metabolites ; 11(8)2021 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-34436463

RESUMEN

During endurance exercises, a large amount of mitochondrial acetyl-CoA is produced in skeletal muscles from lipids, and the excess acetyl-CoA suppresses the metabolic flux from glycolysis to the TCA cycle. This study evaluated the hypothesis that taurine and carnitine act as a buffer of the acetyl moiety of mitochondrial acetyl-CoA derived from the short- and long-chain fatty acids of skeletal muscles during endurance exercises. In human subjects, the serum concentrations of acetylated forms of taurine (NAT) and carnitine (ACT), which are the metabolites of acetyl-CoA buffering, significantly increased after a full marathon. In the culture medium of primary human skeletal muscle cells, NAT and ACT concentrations significantly increased when they were cultured with taurine and acetate or with carnitine and palmitic acid, respectively. The increase in the mitochondrial acetyl-CoA/free CoA ratio induced by acetate and palmitic acid was suppressed by taurine and carnitine, respectively. Elevations of NAT and ACT in the blood of humans during endurance exercises might serve the buffering of the acetyl-moiety in mitochondria by taurine and carnitine, respectively. The results suggest that blood levels of NAT and ACT indicate energy production status from fatty acids in the skeletal muscles of humans undergoing endurance exercise.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA