Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Phys Biol ; 19(2)2022 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-34942613

RESUMEN

In studies of the unicellular eukaryoteDictyostelium discoideum, many have anecdotally observed that cell dilution below a certain 'threshold density' causes cells to undergo a period of slow growth (lag). However, little is documented about the slow growth phase and the reason for different growth dynamics below and above this threshold density. In this paper, we extend and correct our earlier work to report an extensive set of experiments, including the use of new cell counting technology, that set this slow-to-fast growth transition on a much firmer biological basis. We show that dilution below a certain density (around 104cells ml-1) causes cells to grow slower on average and exhibit a large degree of variability: sometimes a sample does not lag at all, while sometimes it takes many moderate density cell cycle times to recover back to fast growth. We perform conditioned media experiments to demonstrate that a chemical signal mediates this endogenous phenomenon. Finally, we argue that while simple models involving fluid transport of signal molecules or cluster-based signaling explain typical behavior, they do not capture the high degree of variability between samples but nevertheless favor an intra-cluster mechanism.


Asunto(s)
Modelos Biológicos , Transducción de Señal , Ciclo Celular , Densidad de Población , Dinámica Poblacional
2.
J R Soc Interface ; 10(88): 20130606, 2013 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-24026470

RESUMEN

Living cells depend upon the detection of chemical signals for their existence. Eukaryotic cells can sense a concentration difference as low as a few per cent across their bodies. This process was previously suggested to be limited by the receptor-ligand binding fluctuations. Here, we first determine the chemotaxis response of Dictyostelium cells to static folic acid gradients and show that they can significantly exceed this sensitivity, responding to gradients as shallow as 0.2% across the cell body. Second, using a previously developed information theory framework, we compare the total information gained about the gradient (based on the cell response) to its upper limit: the information gained at the receptor-ligand binding step. We find that the model originally applied to cAMP sensing fails as demonstrated by the violation of the data processing inequality, i.e. the total information exceeds the information at the receptor-ligand binding step. We propose an extended model with multiple known receptor types and with cells allowed to perform several independent measurements of receptor occupancy. This does not violate the data processing inequality and implies the receptor-ligand binding noise dominates both for low- and high-chemoattractant concentrations. We also speculate that the interplay between exploration and exploitation is used as a strategy for accurate sensing of otherwise unmeasurable levels of a chemoattractant.


Asunto(s)
Quimiotaxis/fisiología , Dictyostelium/fisiología , Ácido Fólico/metabolismo , Modelos Biológicos , Transducción de Señal/fisiología , AMP Cíclico/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA