Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Scand J Med Sci Sports ; 28(6): 1671-1680, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29396987

RESUMEN

Adaptations to 6 weeks of supervised hamstring stretching training and its potential impact on symptoms of eccentric exercise-induced muscle damage (EIMD) were studied in 10 young, untrained men with limited hamstrings flexibility. Participants performed unilateral flexibility training (experimental leg; EL) on an isokinetic dynamometer, while the contralateral limb acted as control (CL). Hip range of motion (ROM), passive, isometric, and concentric torques, active optimum angle, and biceps femoris and semitendinosus muscle thickness and ultrasound echo intensity were assessed both before and after the training. Additionally, muscle soreness was assessed before and after an acute eccentric exercise bout in both legs (EL and CL) at post-training only. Hip ROM increased (P < .001) only in EL after the training (EL = 10.6° vs CL = 1.6°), but no changes (P > .05) in other criterion measurements were observed. After a bout of eccentric exercise at the end of the program, isometric and dynamic peak torques and muscle soreness ratings were significantly altered at all time points equally in EL and CL. Also, active optimum angle was reduced immediately, 48 and 72 hours post-exercise, and hip ROM was reduced at 48 and 72 hours equally in EL and CL. Finally, biceps femoris muscle thickness was significantly increased at all time points, and semitendinosus thickness and echo intensity significantly increased at 72 hours, with no significant differences between legs. The stretching training protocol significantly increased hip ROM; however, it did not induce a protective effect on EIMD in men with tight hamstrings.


Asunto(s)
Músculos Isquiosurales/fisiología , Ejercicios de Estiramiento Muscular , Mialgia/prevención & control , Rango del Movimiento Articular , Adaptación Fisiológica , Adulto , Cadera/fisiología , Humanos , Masculino , Entrenamiento de Fuerza , Torque , Adulto Joven
2.
Int J Sports Med ; 35(1): 41-8, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23771835

RESUMEN

The aim was to investigate the effects of the intra-session exercise order during water-based concurrent training on the neuromuscular adaptations in young women. 26 women (25.1±2.9 years) were placed into 2 groups: resistance prior to (RA) or after (AR) aerobic training. Subjects performed resistance (sets at maximal effort) and aerobic training (exercises at heart rate corresponding to the second ventilatory threshold) twice a week over 12 weeks, performing both exercise types in the same training session. Upper (elbow flexion) and lower-body (knee extension) one-repetition maximum test (1RM) and peak torque (PT) were evaluated. The muscle thickness (MT) of upper (sum of MT of biceps brachii and brachialis) and lower-body (sum of MT of vastus lateralis, vastus medialis, vastus intermedius, and rectus femoris) was determined by ultrasonography. Moreover, the maximal electromyographic activity (EMG) of upper (biceps brachii) and lower-body (sum of EMG of vastus lateralis and rectus femoris) was measured. Both RA and AR groups increased the upper and lower-body 1RM and PT, while the lower-body 1RM increases observed in the RA was greater than AR (43.58±14.00 vs. 27.01±18.05%). RA and AR showed MT increases in all muscles evaluated, while the lower-body MT increases observed in the RA were also greater than AR (10.24±3.11 vs. 5.76±1.88%). There were increases in the maximal EMG of upper and lower-body in both RA and AR, with no differences between groups. Performing resistance prior to aerobic exercise during water-based concurrent training seems to optimize the lower-body strength and hypertrophy.


Asunto(s)
Adaptación Fisiológica/fisiología , Ejercicio Físico/fisiología , Músculo Esquelético/fisiología , Agua , Adulto , Electromiografía , Femenino , Voluntarios Sanos , Humanos , Contracción Isométrica/fisiología , Pierna/fisiología , Fuerza Muscular/fisiología , Músculo Esquelético/diagnóstico por imagen , Músculo Esquelético/crecimiento & desarrollo , Consumo de Oxígeno , Entrenamiento de Fuerza/métodos , Torque , Ultrasonografía
3.
Int J Sports Med ; 33(12): 962-9, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22782384

RESUMEN

The objective of the present study was to evaluate and compare the neuromuscular, morphological and functional adaptations of older women subjected to 3 different types of strength training. 58, healthy women (67 ± 5 year) were randomized to experimental (EG, n=41) and control groups (CG, n=17) during the first 6 weeks when the EG group performed traditional resistance exercise for the lower extremity. Afterwards, EG was divided into three specific strength training groups; a traditional group (TG, n=14), a power group (PG, n=13) that performed the concentric phase of contraction at high speed and a rapid strength group (RG, n=14) that performed a lateral box jump exercise emphasizing the stretch-shortening-cycle (SSC). Subjects trained 2 days per week through the entire 12 weeks. Following 6 weeks of generalized strength training, significant improvements occurred in EG for knee extension one-repetition (1RM) maximum strength (+19%), knee extensor muscle thickness (MT, +15%), maximal muscle activation (+44% average) and onset latency ( -31% average) for vastus lateralis (VL), vastus medialis (VM) and rectus femoris (RF) compared to CG (p<0.05). Following 6 more weeks of specific strength training, the 1RM increased significantly and similarly between groups (average of +21%), as did muscle thickness of the VL (+25%), and activation of VL (+44%) and VM (+26%). The onset latency of RF (TG=285 ± 109 ms, PG=252 ± 76 ms, RG=203 ± 43 ms), reaction time (TG=366 ± 99 ms, PG=274 ± 76 ms, RG=201 ± 41 ms), 30-s chair stand (TG=18 ± 3, PG=18 ± 1, RG=21 ± 2) and counter movement jump (TG=8 ± 2 cm, PG=10 ± 3 cm, RG=13 ± 2 cm) was significantly improved only in RG (p<0.05). At the end of training, the rate of force development (RFD) over 150 ms (TG=2.3 ± 9.8 N·s(-1), PG=3.3 ± 3.2 N·s(-1), RG=3.8 ± 6.8 N·s(-1), CG=2.3 ± 7.0 N·s(-1)) was significantly greater in RG and PG than in TG and CG (p<0.05). In conclusion, rapid strength training is more effective for the development of rapid force production of muscle than other specific types of strength training and by consequence, better develops the functional capabilities of older women.


Asunto(s)
Músculo Esquelético/fisiología , Entrenamiento de Fuerza/métodos , Anciano , Femenino , Humanos , Persona de Mediana Edad , Fuerza Muscular/fisiología
4.
Neuropharmacology ; 37(8): 1081-9, 1998 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-9833637

RESUMEN

Several lines of evidence suggest that the mechanism of action of antidepressant drugs (AD) involves adaptive changes occurring in intraneuronal post-receptor signal transduction cascades. Protein phosphorylation has a key role in signal transduction and was previously found to be a target in the action of AD (5-HT and/or NA reuptake blockers). Several studies showed that cAMP- and type II Ca2+/calmodulin-dependent protein kinases (PKA and CaMKII) are markedly affected by typical AD in two different and complementary cellular districts, respectively microtubules (a somatodendritic compartment) and synaptic vesicles (a presynaptic terminal compartment). In order to investigate whether the effect on protein kinases may be involved in the therapeutic action of drugs it is interesting to compare the effect of atypical AD with that of typical drugs. In this study the effect of the atypical AD S-adenosylmethionine (SAMe) was tested. Repeated (12 days) SAMe treatment induced in cerebrocortical microtubules an increase in the binding of cAMP to the RII PKA regulatory subunit and an increase in the endogenous phosphorylation of microtubule-associated protein 2, an effect resembling that of typical AD. In synaptic terminals the treatment induced an increase in the activity of CaMKII and in the endogenous phosphorylation of vesicular substrates. However, this modification was found in the cerebral cortex rather than in the hippocampus, where typical AD affect CaMKII. In addition the synapsin I level was decreased in the hippocampus and increased in the cerebral cortex, an effect not detected with typical AD.


Asunto(s)
Proteínas Quinasas Dependientes de Calcio-Calmodulina/efectos de los fármacos , Corteza Cerebral/enzimología , Proteínas Quinasas Dependientes de AMP Cíclico/efectos de los fármacos , Hipocampo/efectos de los fármacos , S-Adenosilmetionina/farmacología , Animales , Proteína Quinasa Tipo II Dependiente de AMP Cíclico , Masculino , Fosforilación , Ratas , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos , Sinapsinas/metabolismo , Vesículas Sinápticas/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA