Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Remote Sens Environ ; 264: 112609, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34602655

RESUMEN

Remote sensing-based measurements of solar-induced chlorophyll fluorescence (SIF) are useful for assessing plant functioning at different spatial and temporal scales. SIF is the most direct measure of photosynthesis and is therefore considered important to advance capacity for the monitoring of gross primary production (GPP) while it has also been suggested that its yield facilitates the early detection of vegetation stress. However, due to the influence of different confounding effects, the apparent SIF signal measured at canopy level differs from the fluorescence emitted at leaf level, which makes its physiological interpretation challenging. One of these effects is the scattering of SIF emitted from leaves on its way through the canopy. The escape fraction ( f esc ) describes the scattering of SIF within the canopy and corresponds to the ratio of apparent SIF at canopy level to SIF at leaf level. In the present study, the fluorescence correction vegetation index (FCVI) was used to determine f esc of far-red SIF for three structurally different crops (sugar beet, winter wheat, and fruit trees) from a diurnal data set recorded by the airborne imaging spectrometer HyPlant. This unique data set, for the first time, allowed a joint analysis of spatial and temporal dynamics of structural effects and thus the downscaling of far-red SIF from canopy ( SIF 760 canopy ) to leaf level ( SIF 760 leaf ). For a homogeneous crop such as winter wheat, it seems to be sufficient to determine f esc once a day to reliably scale SIF760 from canopy to leaf level. In contrast, for more complex canopies such as fruit trees, calculating f esc for each observation time throughout the day is strongly recommended. The compensation for structural effects, in combination with normalizing SIF760 to remove the effect of incoming radiation, further allowed the estimation of SIF emission efficiency ( ε SIF ) at leaf level, a parameter directly related to the diurnal variations of plant photosynthetic efficiency.

2.
Remote Sens Environ ; 231: 111272, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36082142

RESUMEN

Terrestrial gross primary productivity (GPP) plays an essential role in the global carbon cycle, but the quantification of the spatial and temporal variations in photosynthesis is still largely uncertain. Our work aimed to investigate the potential of remote sensing to provide new insights into plant photosynthesis at a fine spatial resolution. This goal was achieved by exploiting high-resolution images acquired with the FLuorescence EXplorer (FLEX) airborne demonstrator HyPlant. The sensor was flown over a mixed forest, and the images collected were elaborated to obtain two independent indicators of plant photosynthesis. First, maps of sun-induced chlorophyll fluorescence (F), a novel indicator of plant photosynthetic activity, were successfully obtained at both the red and far-red peaks (r2 = 0.89 and p < 0.01, r2 = 0.77 and p < 0.01, respectively, compared to top-of-canopy ground-based measurements acquired synchronously with the overflight) over the forested study area. Second, maps of GPP and absorbed photosynthetically active radiation (APAR) were derived using a customised version of the coupled biophysical model Breathing Earth System Simulator (BESS). The model was driven with airborne-derived maps of key forest traits (i.e., leaf chlorophyll content (LCC) and leaf area index (LAI)) and meteorological data providing a high-resolution snapshot of the variables of interest across the study site. The LCC and LAI were accurately estimated (RMSE = 5.66 µg cm-2 and RMSE = 0.51 m2m-2, respectively) through an optimised Look-Up-Table-based inversion of the PROSPECT-4-INFORM radiative transfer model, ensuring the accurate representation of the spatial variation of these determinants of the ecosystem's functionality. The spatial relationships between the measured F and modelled BESS outputs were then analysed to interpret the variability of ecosystem functioning at a regional scale. The results showed that far-red F is significantly correlated with the GPP (r2 = 0.46, p < 0.001) and APAR (r2 = 0.43, p < 0.001) in the spatial domain and that this relationship is nonlinear. Conversely, no statistically significant relationships were found between the red F and the GPP or APAR (p > 0.05). The spatial relationships found at high resolution provide valuable insight into the critical role of spatial heterogeneity in controlling the relationship between the far-red F and the GPP, indicating the need to consider this heterogeneity at a coarser resolution.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA