Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Diabetologia ; 66(4): 754-767, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36525084

RESUMEN

AIMS/HYPOTHESIS: Sodium-glucose cotransporter 2 (SGLT2) inhibitors are widely used in the treatment of type 2 diabetes, heart failure and chronic kidney disease. Their role in the prevention of diet-induced metabolic deteriorations, such as obesity, insulin resistance and fatty liver disease, has not been defined yet. In this study we set out to test whether empagliflozin prevents weight gain and metabolic dysfunction in a mouse model of diet-induced obesity and insulin resistance. METHODS: C57Bl/6 mice were fed a western-type diet supplemented with empagliflozin (WDE) or without empagliflozin (WD) for 10 weeks. A standard control diet (CD) without or with empagliflozin (CDE) was used to control for diet-specific effects. Metabolic phenotyping included assessment of body weight, food and water intake, body composition, hepatic energy metabolism, skeletal muscle mitochondria and measurement of insulin sensitivity using hyperinsulinaemic-euglycaemic clamps. RESULTS: Mice fed the WD were overweight, hyperglycaemic, hyperinsulinaemic and insulin resistant after 10 weeks. Supplementation of the WD with empagliflozin prevented these metabolic alterations. While water intake was significantly increased by empagliflozin supplementation, food intake was similar in WDE- and WD-fed mice. Adipose tissue depots measured by MRI were significantly smaller in WDE-fed mice than in WD-fed mice. Additionally, empagliflozin supplementation prevented significant steatosis found in WD-fed mice. Accordingly, hepatic insulin signalling was deteriorated in WD-fed mice but not in WDE-fed mice. Empagliflozin supplementation positively affected size and morphology of mitochondria in skeletal muscle in both CD- and WD-fed mice. CONCLUSIONS/INTERPRETATION: Empagliflozin protects mice from diet-induced weight gain, insulin resistance and hepatic steatosis in a preventative setting and improves muscle mitochondrial morphology independent of the type of diet.


Asunto(s)
Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Enfermedad del Hígado Graso no Alcohólico , Ratones , Animales , Resistencia a la Insulina/fisiología , Diabetes Mellitus Tipo 2/metabolismo , Obesidad/metabolismo , Hígado/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Aumento de Peso , Insulina/metabolismo , Dieta Occidental , Ratones Endogámicos C57BL , Dieta Alta en Grasa
2.
Int J Obes (Lond) ; 46(5): 951-959, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35031697

RESUMEN

OBJECTIVES: Metabolic inflammation is a hallmark of obesity and related disorders, afflicting substantial morbidity and mortality to individuals worldwide. White visceral and subcutaneous adipose tissue not only serves as energy storage but also controls metabolism. Adipose tissue inflammation, commonly observed in human obesity, is considered a critical driver of metabolic perturbation while molecular hubs are poorly explored. Metabolic stress evoked by e.g. long-chain fatty acids leads to oxidative perturbation of adipocytes and production of inflammatory cytokines, fuelling macrophage infiltration and systemic low-grade inflammation. Glutathione peroxidase 4 (GPX4) protects against lipid peroxidation, accumulation of oxygen-specific epitopes and cell death, collectively referred to as ferroptosis. Here, we explore the function of adipocyte GPX4 in mammalian metabolism. METHODS: We studied the regulation and function of GPX4 in differentiated mouse adipocytes derived from 3T3-L1 fibroblasts. We generated two conditional adipocyte-specific Gpx4 knockout mice by crossing Gpx4fl/fl mice with Adipoq-Cre+ (Gpx4-/-AT) or Fabp4-Cre+ (Gpx4+/-Fabp4) mice. Both models were metabolically characterized by a glucose tolerance test and insulin resistance test, and adipose tissue lipid peroxidation, inflammation and cell death were assessed by quantifying oxygen-specific epitopes, transcriptional analysis of chemokines, quantification of F4/80+ macrophages and TUNEL labelling. RESULTS: GPX4 expression was induced during and required for adipocyte differentiation. In mature adipocytes, impaired GPX4 activity spontaneously evoked lipid peroxidation and expression of inflammatory cytokines such as TNF-α, interleukin 1ß (IL-1ß), IL-6 and the IL-8 homologue CXCL1. Gpx4-/-AT mice spontaneously displayed adipocyte hypertrophy on a chow diet, which was paralleled by the accumulation of oxygen-specific epitopes and macrophage infiltration in adipose tissue. Furthermore, Gpx4-/-AT mice spontaneously developed glucose intolerance, hepatic insulin resistance and systemic low-grade inflammation, when compared to wildtype littermates, which was similarly recapitulated in Gpx4+/-Fabp4 mice. Gpx4-/-AT mice exhibited no signs of adipocyte death. CONCLUSION: Adipocyte GPX4 protects against spontaneous metabolic dysregulation and systemic low-grade inflammation independent from ferroptosis, which could be therapeutically exploited in the future.


Asunto(s)
Resistencia a la Insulina , Adipocitos/metabolismo , Tejido Adiposo/metabolismo , Animales , Citocinas/metabolismo , Dieta Alta en Grasa , Epítopos/metabolismo , Inflamación/metabolismo , Mamíferos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Obesidad/metabolismo , Oxígeno/metabolismo , Fosfolípido Hidroperóxido Glutatión Peroxidasa
3.
J Inherit Metab Dis ; 45(2): 144-156, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34595757

RESUMEN

Inherited metabolic disorders (IMDs) are a heterogeneous group of rare disorders characterized by disruption of metabolic pathways. To date, data on incidence and prevalence of IMDs are limited. Taking advantage of a functioning network within the Austrian metabolic group, our registry research aimed to update the data of the "Registry for Inherited Metabolic Disorders" started between 1985 and 1995 with retrospectively retrieved data on patients with IMDs according to the Society for the Study of Inborn Errors of Metabolism International Classification of Diseases 11 (SSIEM ICD11) catalogue. Included in this retrospective register were 2631 patients with an IMD according to the SSIEM ICD11 Classification, who were treated in Austria. Thus, a prevalence of 1.8/10 000 for 2020 and a median minimal birth prevalence of 16.9/100 000 (range 0.7/100 000-113/100 000) were calculated for the period 1921 to February 2021. We detected a male predominance (m:f = 1.2:1) and a mean age of currently alive patients of 17.6 years (range 5.16 months-100 years). Most common diagnoses were phenylketonuria (17.7%), classical galactosaemia (6.6%), and biotinidase deficiency (4.2%). The most common diagnosis categories were disorders of amino acid and peptide metabolism (819/2631; 31.1%), disorders of energy metabolism (396/2631; 15.1%), and lysosomal disorders (395/2631; 15.0%). In addition to its epidemiological relevance, the "Registry for Inherited Metabolic Disorders" is an important tool for enhancing an exchange between care providers. Moreover, by pooling expertise it prospectively improves patient treatment, similar to pediatric oncology protocols. A substantial requirement for ful filling this goal is to regularly update the registry and provide nationwide coverage with inclusion of all medical specialties.


Asunto(s)
Enfermedades Metabólicas , Errores Innatos del Metabolismo , Austria/epidemiología , Niño , Femenino , Humanos , Lactante , Masculino , Enfermedades Metabólicas/diagnóstico , Enfermedades Metabólicas/epidemiología , Errores Innatos del Metabolismo/diagnóstico , Errores Innatos del Metabolismo/epidemiología , Prevalencia , Sistema de Registros , Estudios Retrospectivos
4.
Nutr Metab Cardiovasc Dis ; 31(3): 972-978, 2021 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-33549451

RESUMEN

BACKGROUND AND AIMS: Western dietary habits are partially characterized by increased uptake of fructose, which contributes to metabolic dysregulation and associated liver diseases. For example, a diet enriched with fructose drives insulin resistance and non-alcoholic fatty liver disease (NAFLD). The molecular hubs that control fructose-induced metabolic dysregulation are poorly understood. Apolipoprotein A5 (apoA5) controls triglyceride metabolism with a putative role in hepatic lipid deposition. We explored apoA5 as a rheostat for fructose-induced hepatic and metabolic disease in mammals. METHODS AND RESULTS: ApoA5 knock out (-/-) and wildtype (wt) mice were fed with high fructose diet or standard diet for 10 weeks. Afterwards, we conducted a metabolic characterization by insulin tolerance test as well as oral glucose tolerance test. Additionally, hepatic lipid content as well as transcription patterns of key enzymes and transcription factors in glucose and lipid metabolism were evaluated. Despite comparable body weight, insulin sensitivity was significantly improved in high fructose diet fed apoA5 (-/-) when compared to wildtype mice on the same diet. In parallel, hepatic triglyceride content was significantly lower in apoA5 (-/-) mice than in wt mice. No difference was seen between apoA5 (-/-) and wt mice on a standard diet. CONCLUSION: ApoA5 is involved in fructose-induced metabolic dysregulation and associated hepatic steatosis suggesting that apoA5 may be a novel target to treat metabolic diseases.


Asunto(s)
Apolipoproteína A-V/deficiencia , Glucemia/metabolismo , Azúcares de la Dieta , Fructosa , Resistencia a la Insulina , Insulina/sangre , Hígado/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Triglicéridos/metabolismo , Animales , Apolipoproteína A-V/genética , Biomarcadores/sangre , Modelos Animales de Enfermedad , Ácidos Grasos/sangre , Ratones Noqueados , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/prevención & control
5.
Curr Diab Rep ; 20(6): 18, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-32239341

RESUMEN

PURPOSE OF REVIEW: Type 1 and type 2 diabetes are often accompanied by mostly mild forms of exocrine pancreatic insufficiency. Despite high prevalence, little is known about the clinical consequences of exocrine pancreatic insufficiency and its optimal (nutritional) treatment. Even less is known if and to what extent exocrine pancreas insufficiency also affects glycemic control in diabetes. This article aims for summarizing current clinical knowledge on screening, diagnosis, and treatment and gives an overview on the pathophysiology of exocrine pancreatic insufficiency in diabetes. RECENT FINDINGS: Recent studies reveal novel insights into the close interaction of acinar, ductal, and endocrine cells and the gut-pancreas axis. Exocrine pancreatic insufficiency is a clinically relevant, frequent but poorly understood disorder in both type 1 and type 2 diabetes.


Asunto(s)
Diabetes Mellitus Tipo 1/complicaciones , Diabetes Mellitus Tipo 2/complicaciones , Insuficiencia Pancreática Exocrina/diagnóstico , Insuficiencia Pancreática Exocrina/fisiopatología , Insuficiencia Pancreática Exocrina/etiología , Insuficiencia Pancreática Exocrina/terapia , Humanos
6.
Biochem Biophys Res Commun ; 485(2): 366-371, 2017 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-28213130

RESUMEN

Dipeptidyl-peptidase 4 [DPP-4) has evolved into an important target in diabetes therapy due to its role in incretin hormone metabolism. In contrast to its systemic effects, cellular functions of membranous DPP-4 are less clear. Here we studied the role of DPP-4 in hepatic energy metabolism. In order to distinguish systemic from cellular effects we established a cell culture model of DPP-4 knockdown in human hepatoma cell line HepG2. DPP-4 suppression was associated with increased basal glycogen content due to enhanced insulin signaling as shown by increased phosphorylation of insulin-receptor substrate 1 (IRS-1), protein kinase B/Akt and mitogen-activated protein kinases (MAPK)/ERK, respectively. Additionally, glucose-6-phosphatase cDNA expression was significantly decreased in DPP-4 deficiency. Reduced triglyceride content in DPP-4 knockdown cells was paralleled by enhanced expressions of peroxisome proliferator-activated receptor alpha (PPARα) and carnitine palmitoyltransferase -1 (CPT-1) while sterol regulatory element-binding protein 1c (SREBP-1c) expression was significantly decreased. Our data suggest that hepatic DPP-4 induces a selective pathway of insulin resistance with reduced glycogen storage, enhanced glucose output and increased lipid accumulation in the liver. Hepatic DPP-4 might be a novel target in fatty liver disease in patients with glucose intolerance.


Asunto(s)
Dipeptidil Peptidasa 4/genética , Hepatocitos/metabolismo , Resistencia a la Insulina , Metabolismo de los Lípidos/genética , Interferencia de ARN , Western Blotting , Carnitina O-Palmitoiltransferasa/genética , Carnitina O-Palmitoiltransferasa/metabolismo , Dipeptidil Peptidasa 4/metabolismo , Regulación Neoplásica de la Expresión Génica , Glucosa/metabolismo , Glucosa-6-Fosfatasa/genética , Glucosa-6-Fosfatasa/metabolismo , Glucógeno/metabolismo , Células Hep G2 , Hepatocitos/patología , Humanos , Proteínas Quinasas Activadas por Mitógenos/metabolismo , PPAR alfa/genética , PPAR alfa/metabolismo , Fosforilación , Proteínas Proto-Oncogénicas c-akt/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Triglicéridos/metabolismo
7.
J Nutr Biochem ; 99: 108837, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34419570

RESUMEN

Pronounced weight loss was shown to improve adipocyte dysfunction and insulin sensitivity in obese subjects. While bariatric surgery is frequently accompanied by adverse side effects, weight loss due to caloric restriction is often followed by weight regain. Here we aimed to determine whether switching the diet from a metabolically harmful Western type diet to a balanced standard diet is sufficient to reverse adipocyte dysfunction in diet-induced obese mice. Male C57BL/6 mice were fed a Western diet for 10 weeks and afterwards switched to a standard diet for eight more weeks (WD/SD mice) or continued to be fed a Western diet (WD/WD mice) ad libitum. Mice fed SD for 18 weeks served as control group (SD/SD). Insulin sensitivity was similar in WD/SD and SD/SD mice despite increased body weight in WD/SD mice. Beiging markers Ucp-1, Cidea and Cox8b were drastically reduced in subcutaneous adipose tissue of WD/SD mice when compared with SD/SD mice. Also, in brown adipose tissue morphologic features and markers of thermogenesis were still altered in both WD/SD and WD/WD mice. However, adipocyte size, Hif1α and macrophage infiltration were significantly lower in both, brown and white adipose tissues of WD/SD compared to WD/WD mice and additionally, a shift toward anti-inflammatory M2 phenotype was found in WD/SD mice only. In conclusion our data suggest that switching the diet is sufficient to improve adipose tissue inflammation, while western diet negatively affects thermogenic capacity of brown adipose tissue, and inhibits beiging of white adipose tissue in the long-term.


Asunto(s)
Adipocitos/metabolismo , Obesidad/dietoterapia , Termogénesis , Tejido Adiposo Pardo/metabolismo , Animales , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/metabolismo , Dieta Alta en Grasa/efectos adversos , Dieta Occidental/efectos adversos , Resistencia a la Insulina , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Obesidad/metabolismo , Obesidad/fisiopatología , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo
8.
Sci Rep ; 10(1): 19686, 2020 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-33184414

RESUMEN

Sodium glucose transporter (SGLT)-2 inhibitors have consistently shown cardioprotective effects independent of the glycemic status of treated patients. In this study we aimed to investigate underlying mechanisms of short-term empagliflozin treatment in a mouse model of type II diabetes. Male db/db mice were fed a western type diet with or without enrichment with empagliflozin for 7 days. While glucose tolerance was significantly improved in empagliflozin treated mice, body weight and fasting insulin levels were comparable in both groups. Cardiac insulin signaling activity indicated by reduced proteinkinase B (AKT) phosphorylation was significantly decreased in the empagliflozin treated group. Remarkably, mitochondrial mass estimated by citrate synthase activity was significantly elevated in empagliflozin treated mice. Accordingly, mitochondrial morphology was significantly altered upon treatment with empagliflozin as analysed by transmission electron microscopy. Additionally, short-term empagliflozin therapy was associated with a changed cardiac tissue cytokine expression in favor of an anti-inflammatory pattern. Our data suggest that early cardioprotection in empagliflozin treated mice is independent of a reduction in body weight or hyperinsulinemia. Ameliorated mitochondrial ultrastructure, attenuated cardiac insulin signaling and diminished cardiac inflammation might contribute to the cardioprotective effects of empagliflozin.


Asunto(s)
Compuestos de Bencidrilo/administración & dosificación , Cardiotónicos/administración & dosificación , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Dieta Occidental/efectos adversos , Glucósidos/administración & dosificación , Animales , Compuestos de Bencidrilo/farmacología , Peso Corporal/efectos de los fármacos , Cardiotónicos/farmacología , Citrato (si)-Sintasa/metabolismo , Citocinas/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Glucósidos/farmacología , Masculino , Ratones , Miocardio/metabolismo , Fosforilación/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA