Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Mol Biol Evol ; 39(10)2022 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-36205081

RESUMEN

Although new genes can arrive from modes other than duplication, few examples are well characterized. Given high expression in some human brain subregions and a putative link to psychological disorders [e.g., schizophrenia (SCZ)], suggestive of brain functionality, here we characterize piggyBac transposable element-derived 1 (PGBD1). PGBD1 is nonmonotreme mammal-specific and under purifying selection, consistent with functionality. The gene body of human PGBD1 retains much of the original DNA transposon but has additionally captured SCAN and KRAB domains. Despite gene body retention, PGBD1 has lost transposition abilities, thus transposase functionality is absent. PGBD1 no longer recognizes piggyBac transposon-like inverted repeats, nonetheless PGBD1 has DNA binding activity. Genome scale analysis identifies enrichment of binding sites in and around genes involved in neuronal development, with association with both histone activating and repressing marks. We focus on one of the repressed genes, the long noncoding RNA NEAT1, also dysregulated in SCZ, the core structural RNA of paraspeckles. DNA binding assays confirm specific binding of PGBD1 both in the NEAT1 promoter and in the gene body. Depletion of PGBD1 in neuronal progenitor cells (NPCs) results in increased NEAT1/paraspeckles and differentiation. We conclude that PGBD1 has evolved core regulatory functionality for the maintenance of NPCs. As paraspeckles are a mammal-specific structure, the results presented here show a rare example of the evolution of a novel gene coupled to the evolution of a contemporaneous new structure.


Asunto(s)
Elementos Transponibles de ADN , ARN Largo no Codificante , Animales , Núcleo Celular/genética , Histonas/metabolismo , Humanos , Mamíferos/genética , Mamíferos/metabolismo , Proteínas del Tejido Nervioso , Paraspeckles , ARN Largo no Codificante/metabolismo , Transposasas/genética , Transposasas/metabolismo
2.
Int J Mol Sci ; 24(8)2023 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-37108449

RESUMEN

Transposons are parasitic genetic elements that frequently hijack vital cellular processes of their host. HMGXB4 is a known Wnt signaling-regulating HMG-box protein, previously identified as a host-encoded factor of Sleeping Beauty (SB) transposition. Here, we show that HMGXB4 is predominantly maternally expressed, and marks both germinal progenitor and somatic stem cells. SB piggybacks HMGXB4 to activate transposase expression and target transposition to germinal stem cells, thereby potentiating heritable transposon insertions. The HMGXB4 promoter is located within an active chromatin domain, offering multiple looping possibilities with neighboring genomic regions. HMGXB4 is activated by ERK2/MAPK1, ELK1 transcription factors, coordinating pluripotency and self-renewal pathways, but suppressed by the KRAB-ZNF/TRIM28 epigenetic repression machinery, also known to regulate transposable elements. At the post-translational level, SUMOylation regulates HMGXB4, which modulates binding affinity to its protein interaction partners and controls its transcriptional activator function via nucleolar compartmentalization. When expressed, HMGXB4 can participate in nuclear-remodeling protein complexes and transactivate target gene expression in vertebrates. Our study highlights HMGXB4 as an evolutionarily conserved host-encoded factor that assists Tc1/Mariner transposons to target the germline, which was necessary for their fixation and may explain their abundance in vertebrate genomes.


Asunto(s)
Cromosomas , Elementos Transponibles de ADN , Animales , Elementos Transponibles de ADN/genética , Células Madre , Proteína HMGB2/metabolismo
3.
Int J Mol Sci ; 23(20)2022 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-36293208

RESUMEN

Circular RNAs (circRNAs) are a large class of relatively stable RNA molecules that are highly expressed in animal brains. Many circRNAs have been associated with CNS disorders accompanied by an aberrant wake-sleep cycle. However, the regulation of circRNAs in brain homeostasis over daily light-dark (LD) cycles has not been characterized. Here, we aim to quantify the daily expression changes of circRNAs in physiological conditions in healthy adult animals. Using newly generated and public RNA-Seq data, we monitored circRNA expression throughout the 12:12 h LD cycle in various mouse brain regions. We identified that Cdr1as, a conserved circRNA that regulates synaptic transmission, is highly expressed in the suprachiasmatic nucleus (SCN), the master circadian pacemaker. Despite its high stability, Cdr1as has a very dynamic expression in the SCN throughout the LD cycle, as well as a significant regulation in the hippocampus following the entry into the dark phase. Computational integration of different public datasets predicted that Cdr1as is important for regulating light entrainment in the SCN. We hypothesize that the expression changes of Cdr1as in the SCN, particularly during the dark phase, are associated with light-induced phase shifts. Importantly, our work revises the current beliefs about natural circRNA stability and suggests that the time component must be considered when studying circRNA regulation.


Asunto(s)
Fotoperiodo , ARN Circular , Ratones , Animales , ARN Circular/genética , Ritmo Circadiano/genética , Núcleo Supraquiasmático/metabolismo , Luz
4.
Artículo en Inglés | MEDLINE | ID: mdl-28192174

RESUMEN

Several studies have suggested a role of BDNF in the development of schizophrenia. For example, post-mortem studies have shown significantly reduced levels of BDNF protein expression in the brain of schizophrenia patients. We investigated the relationship between reduced levels of BDNF in the brain and the regulation of prepulse inhibition (PPI), a behavioral endophenotype of schizophrenia. We used BDNF heterozygous mutant rats which display a 50% decrease of mature BDNF protein levels. Previously, we observed normal baseline PPI and responses to the dopamine D1/D2 receptor agonist, apomorphine, in these rats. Here, we focused on the effects of the NMDA receptor antagonist, MK-801, its interaction with mGluR2/3 and mGluR5 receptors, and the PPI response to serotonergic drugs. MK-801 administration caused a dose-dependent reduction of PPI and increase of startle amplitudes. Baseline PPI and the effect of 0.02-0.1mg/kg of MK-801 were not significantly altered in male or female BDNF heterozygous rats, although the MK-801-induced increase in startle levels was reduced. Co-treatment with the mGluR2/3 agonist, LY379,268, or the mGluR5 antagonist, MPEP, did not alter the effect of MK-801 on PPI in controls or BDNF mutant rats. Treatment with the serotonin-1A receptor agonist, 8-OH-DPAT, the serotonin-2A receptor agonist, DOI, or the serotonin releaser, fenfluramine, induced differential effects on PPI and startle but these effects were not different between the genotypes. These results show that a significant decrease of BDNF protein expression does not lead to reduced PPI at baseline or changes in the regulation of PPI via NMDA receptors or serotonergic mechanisms. These findings in a genetic rat model of BDNF deficiency do not support a role for similar reductions of BDNF levels in schizophrenia in the disruption of PPI, widely reported as an endophenotype of the illness. The potential implications of these results for our understanding of changes in PPI and BDNF expression in schizophrenia are discussed.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/deficiencia , Factor Neurotrófico Derivado del Encéfalo/genética , Mutación/genética , Neurotransmisores/metabolismo , Inhibición Prepulso/genética , 8-Hidroxi-2-(di-n-propilamino)tetralin/farmacología , Análisis de Varianza , Animales , Estudios de Cohortes , Maleato de Dizocilpina/farmacología , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/farmacología , Antagonistas de Aminoácidos Excitadores/farmacología , Femenino , Masculino , Mesilatos/farmacología , Inhibición Prepulso/efectos de los fármacos , Piridinas/farmacología , Pirroles/farmacología , Ratas , Ratas Mutantes , Agonistas de Receptores de Serotonina/farmacología
5.
Phys Rev E ; 94(1-1): 012804, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27575199

RESUMEN

Structure and dynamics at soft-matter interfaces play an important role in nature and technical applications. Optical single-molecule investigations are noninvasive and capable to reveal heterogeneities at the nanoscale. In this work we develop an autocorrelation function (ACF) approach to retrieve tracer diffusion parameters obtained from fluorescence correlation spectroscopy (FCS) experiments in thin liquid films at reflecting substrates. This approach then is used to investigate structure and dynamics in 100-nm-thick 8CB liquid crystal films on silicon wafers with five different oxide thicknesses. We find a different extension of the structural reorientation of 8CB at the solid-liquid interface for thin and for thick oxide. For the thin oxides, the perylenediimide tracer diffusion dynamics in general agrees with the hydrodynamic modeling using no-slip boundary conditions with only a small deviation close to the substrate, while a considerably stronger decrease of the interfacial tracer diffusion is found for the thick oxides.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA