Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Mar Drugs ; 21(3)2023 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-36976198

RESUMEN

Excisional wounds are considered one of the most common physical injuries. This study aims to test the effect of a nanophytosomal formulation loaded with a dried hydroalcoholic extract of S. platensis on promoting excisional wound healing. The Spirulina platensis nanophytosomal formulation (SPNP) containing 100 mg PC and 50 mg CH exhibited optimum physicochemical characteristics regarding particle size (598.40 ± 9.68 nm), zeta potential (-19.8 ± 0.49 mV), entrapment efficiency (62.76 ± 1.75%), and Q6h (74.00 ± 1.90%). It was selected to prepare an HPMC gel (SPNP-gel). Through metabolomic profiling of the algal extract, thirteen compounds were identified. Molecular docking of the identified compounds on the active site of the HMGB-1 protein revealed that 12,13-DiHome had the highest docking score of -7.130 kcal/mol. SPNP-gel showed higher wound closure potential and enhanced histopathological alterations as compared to standard (MEBO® ointment) and S. platensis gel in wounded Sprague-Dawley rats. Collectively, NPS promoted the wound healing process by enhancing the autophagy process (LC3B/Beclin-1) and the NRF-2/HO-1antioxidant pathway and halting the inflammatory (TNF-, NF-κB, TlR-4 and VEGF), apoptotic processes (AIF, Caspase-3), and the downregulation of HGMB-1 protein expression. The present study's findings suggest that the topical application of SPNP-gel possesses a potential therapeutic effect in excisional wound healing, chiefly by downregulating HGMB-1 protein expression.


Asunto(s)
Proteínas HMGB , Cicatrización de Heridas , Ratas , Animales , Ratas Sprague-Dawley , Simulación del Acoplamiento Molecular , Proteínas HMGB/farmacología
2.
Molecules ; 26(21)2021 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-34771159

RESUMEN

BACKGROUND: Alzheimer's disease (AD) is a chronic neurological illness that causes considerable cognitive impairment. Hepatic and renal dysfunction may worsen AD by disrupting ß-amyloid homeostasis at the periphery and by causing metabolic dysfunction. Wheatgrass (Triticum aestivum) has been shown to have antioxidant and anti-inflammatory properties. This work aims to study the effect of aluminum on neuronal cells, its consequences on the liver and kidneys, and the possible role of fluoxetine and wheatgrass juice in attenuating these pathological conditions. METHOD: Rats were divided into five groups. Control, AD (AlCl3), Fluoxetine (Fluoxetine and AlCl3), Wheatgrass (Wheatgrass and AlCl3), and combination group (fluoxetine, wheatgrass, and AlCl3). All groups were assigned daily to different treatments for five weeks. CONCLUSIONS: AlCl3 elevated liver and kidney enzymes, over-production of oxidative stress, and inflammatory markers. Besides, accumulation of tau protein and Aß, the elevation of ACHE and GSK-3ß, down-regulation of BDNF, and ß-catenin expression in the brain. Histopathological examinations of the liver, kidney, and brain confirmed this toxicity, while treating AD groups with fluoxetine, wheatgrass, or a combination alleviates toxic insults. CONCLUSION: Fluoxetine and wheatgrass combination demonstrated a more significant neuroprotective impact in treating AD than fluoxetine alone and has protective effects on liver and kidney tissues.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Fluoxetina/farmacología , Riñón/efectos de los fármacos , Hígado/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Triticum/química , Cloruro de Aluminio/antagonistas & inhibidores , Enfermedad de Alzheimer/inducido químicamente , Enfermedad de Alzheimer/metabolismo , Animales , Riñón/patología , Hígado/patología , Masculino , Ratas , Ratas Wistar
3.
Molecules ; 26(18)2021 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-34577079

RESUMEN

Antimicrobial resistance is a dramatic global threat; however, the slow progress of new antibiotic development has impeded the identification of viable alternative strategies. Natural antioxidant-based antibacterial approaches may provide potent therapeutic abilities to effectively block resistance microbes' pathways. While essential oils (EOs) have been reported as antimicrobial agents, its application is still limited ascribed to its low solubility and stability characters; additionally, the related biomolecular mechanisms are not fully understood. Hence, the study aimed to develop a nano-gel natural preparation with multiple molecular mechanisms that could combat bacterial resistance in an acne vulgaris model. A nano-emulgel of thyme/clove EOs (NEG8) was designed, standardized, and its antimicrobial activity was screened in vitro and in vivo against genetically identified skin bacterial clinical isolates (Pseudomonas stutzeri, Enterococcus faecium and Bacillus thuringiensis). As per our findings, NEG8 exhibited bacteriostatic and potent biofilm inhibition activities. An in vivo model was also established using the commercially available therapeutic, adapalene in contra genetically identified microorganism. Improvement in rat behavior was reported for the first time and NEG8 abated the dermal contents/protein expression of IGF-1, TGF-ß/collagen, Wnt/ß-catenin, JAK2/STAT-3, NE, 5-HT, and the inflammatory markers; p(Ser536) NF-κBp65, TLR-2, and IL-6. Moreover, the level of dopamine, protective anti-inflammatory cytokine, IL-10 and PPAR-γ protein were enhanced, also the skin histological structures were improved. Thus, NEG8 could be a future potential topical clinical alternate to synthetic agents, with dual merit mechanism as bacteriostatic antibiotic action and non-antibiotic microbial pathway inhibitor.


Asunto(s)
Acné Vulgar/tratamiento farmacológico , Antibacterianos/farmacología , Antiinflamatorios/farmacología , Conducta Animal/efectos de los fármacos , Extractos Vegetales/farmacología , Polietilenglicoles/farmacología , Polietileneimina/farmacología , Piel/efectos de los fármacos , Animales , Antibacterianos/química , Antibacterianos/uso terapéutico , Antiinflamatorios/química , Antiinflamatorios/uso terapéutico , Biopelículas/efectos de los fármacos , Señales (Psicología) , Factores de Transcripción Forkhead/metabolismo , Factor I del Crecimiento Similar a la Insulina/metabolismo , Interleucina-6/metabolismo , FN-kappa B/metabolismo , Nanogeles/química , Nanogeles/uso terapéutico , PPAR gamma/metabolismo , Extractos Vegetales/química , Extractos Vegetales/uso terapéutico , Polietilenglicoles/química , Polietilenglicoles/uso terapéutico , Polietileneimina/química , Polietileneimina/uso terapéutico , Ratas , Piel/metabolismo , Syzygium/química , Thymus (Planta)/química , Receptor Toll-Like 2/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Proteínas Wnt/metabolismo
4.
Int Immunopharmacol ; 139: 112774, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39067398

RESUMEN

Repetitive traumatic brain injury (RTBI) is acknowledged as a silent overlooked public health crisis, with an incomplete understanding of its pathomechanistic signaling pathways. Mounting evidence suggests the involvement of thrombin and its receptor, the protease-activated receptor (PAR)1, in the development of secondary injury in TBI; however, the consequences of PAR1 modulation and its impact on ferroptosis-redox signaling, and NLRP3 inflammasome activation in RTBI, remain unclear. Further, the utilitarian function of PAR1 as a therapeutic target in RTBI has not been elucidated. To study this crosstalk, RTBI was induced in Wistar rats by daily weight drops on the right frontal region for five days. Three groups were included: normal control, untreated RTBI, and RTBI+SCH79797 (a PAR1 inhibitor administered post-trauma at 25 µg/kg/day). The concomitant treatment of PAR1 antagonism improved altered behavior function, cortical histoarchitecture, and neuronal cell survival. Moreover, the receptor blockade downregulated mRNA expression of PAR1 but upregulatedthat of the neuroprotective receptor PPAR-γ. The anti-inflammatory impact of SCH79797 was signified by the low immune expression/levels of NF-κB p65,TNF-α, IL-1ß, and IL-18. Consequently, the PAR1 blocker hindered the formation of inflammasome components NLRP3, ASC, and activated caspase-1. Ultimately, SCH79797 treatment abated ferroptosis-dependent iron redox signaling through the activation of the antioxidant Nrf2/HO-1 axis and its subsequent antioxidant machinery (GPX4, SOD) to limit lipid peroxidation, iron accumulation, and transferrin serum increment. Collectively, SCH79797 offered putative preventive mechanisms against secondary RTBI consequences in rats by impeding ferroptosis and NLRP3 inflammasome through activating the PPAR-γ/Nrf2 antioxidant cue.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Ferroptosis , Inflamasomas , Factor 2 Relacionado con NF-E2 , Proteína con Dominio Pirina 3 de la Familia NLR , PPAR gamma , Ratas Wistar , Receptor PAR-1 , Transducción de Señal , Animales , Factor 2 Relacionado con NF-E2/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , PPAR gamma/metabolismo , Lesiones Traumáticas del Encéfalo/tratamiento farmacológico , Lesiones Traumáticas del Encéfalo/metabolismo , Lesiones Traumáticas del Encéfalo/inmunología , Lesiones Traumáticas del Encéfalo/patología , Inflamasomas/metabolismo , Ferroptosis/efectos de los fármacos , Masculino , Ratas , Transducción de Señal/efectos de los fármacos , Receptor PAR-1/metabolismo , Fosfolípido Hidroperóxido Glutatión Peroxidasa/metabolismo , Hemo Oxigenasa (Desciclizante)/metabolismo , Hemo Oxigenasa (Desciclizante)/genética , Modelos Animales de Enfermedad
5.
Int Immunopharmacol ; 134: 112118, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38705029

RESUMEN

This study aims to explore the protective machinery of pegylated polymeric micelles of boswellic acid-selenium (PMBS) against secondary neuronal damage triggered by mild repetitive traumatic brain injury (RTBI). After PMBS characterization in terms of particle size, size distribution, zeta potential, and transmission electronic microscopy, the selected formula was used to investigate its potency against experimental RTBI. Five groups of rats were used; group 1 (control) and the other four groups were subjected to RTBI. Groups 2 was RTBI positive control, while 3, 4, and 5 received boswellic acid (BSA), selenium (SEL), and PMBS, respectively. The open-field behavioral test was used for behavioral assessment. Subsequently, brain tissues were utilized for hematoxylin and eosin staining, Nissl staining, Western blotting, and ELISA in addition to evaluating microRNA expression (miR-155 and miR-146a). The behavioral changes, oxidative stress, and neuroinflammation triggered by RTBI were all improved by PMBS. Moreover, PMBS mitigated excessive glutamate-induced excitotoxicity and the dysregulation in miR-155 and miR-146a expression. Besides, connexin43 (Cx43) expression as well as klotho and brain-derived neurotrophic factor (BDNF) were upregulated with diminished neuronal cell death and apoptosis because of reduced Forkhead Box class O3a(Foxo3a) expression in the PMBS-treated group. The current study has provided evidence of the benefits produced by incorporating BSA and SEL in PEGylated polymeric micelles formula. PMBS is a promising therapy for RTBI. Its beneficial effects are attributed to the manipulation of many pathways, including the regulation of miR-155 and miR-146a expression, as well as the BDNF /Klotho/Foxo3a signaling pathway.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Proteína Forkhead Box O3 , Proteínas Klotho , Micelas , MicroARNs , Polietilenglicoles , Selenio , Triterpenos , Animales , MicroARNs/genética , MicroARNs/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Factor Neurotrófico Derivado del Encéfalo/genética , Proteína Forkhead Box O3/metabolismo , Proteína Forkhead Box O3/genética , Masculino , Ratas , Selenio/química , Triterpenos/farmacología , Triterpenos/uso terapéutico , Transducción de Señal/efectos de los fármacos , Ratas Sprague-Dawley , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Modelos Animales de Enfermedad , Estrés Oxidativo/efectos de los fármacos , Lesiones Traumáticas del Encéfalo/tratamiento farmacológico , Lesiones Traumáticas del Encéfalo/metabolismo , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/patología , Polímeros/química
6.
Int Immunopharmacol ; 134: 112147, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38718656

RESUMEN

The neuronal and renal deteriorations observed in patients exposed to methotrexate (MTX) therapy highlight the need for medical interventions to counteract these complications. Boswellic acid (BA) and apigenin (APG) are natural phytochemicals with prominent neuronal and renal protective impacts in various ailments. However, their impacts on MTX-provoked renal and hippocampal toxicity have not been reported. Thus, the present work is tailored to clarify the ability of BA and APG to counteract MTX-provoked hippocampal and renal toxicity. BA (250 mg/kg) or APG (20 mg/kg) were administered orally in rats once a day for 10 days, while MTX (20 mg/kg, i.p.) was administered once on the sixth day of the study. At the histopathological level, BA and APG attenuated MTX-provoked renal and hippocampal aberrations. They also inhibited astrocyte activation, as proven by the inhibition of glial fibrillary acidic protein (GFAP). These impacts were partially mediated via the activation of autophagy flux, as proven by the increased expression of beclin1, LC3-II, and the curbing of p62 protein, alongside the regulation of the p-AMPK/mTOR nexus. In addition, BA and APG displayed anti-inflammatory features as verified by the damping of NOD-2 and p-NF-κB p65 to reduce TNF-α, IL-6, and NLRP3/IL-1ß cue. These promising effects were accompanied with a notable reduction in one of the gap junction proteins, connexin-43 (Conx-43). These positive impacts endorse BA and APG as adjuvant modulators to control MTX-driven hippocampal and nephrotoxicity.


Asunto(s)
Apigenina , Autofagia , Conexina 43 , Hipocampo , Riñón , Metotrexato , FN-kappa B , Proteína con Dominio Pirina 3 de la Familia NLR , Triterpenos , Animales , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Hipocampo/patología , Metotrexato/efectos adversos , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Apigenina/farmacología , Apigenina/uso terapéutico , Triterpenos/farmacología , Triterpenos/uso terapéutico , FN-kappa B/metabolismo , Masculino , Ratas , Conexina 43/metabolismo , Autofagia/efectos de los fármacos , Riñón/efectos de los fármacos , Riñón/patología , Riñón/metabolismo , Ratas Wistar , Transducción de Señal/efectos de los fármacos
7.
Pharmaceuticals (Basel) ; 17(6)2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38931399

RESUMEN

The Cucurbitaceae family includes several edible species that are consumed globally as fruits and vegetables. These species produce high volumes of seeds that are often discarded as waste. In this study, we investigate the chemical composition and biological activity of three seed oils from Cucurbitaceae plants, namely, cantaloupe, honeydew, and zucchini, in comparison to the widely used pumpkin seed oil for their ability to enhance and accelerate wound healing in rats. Our results showed that honeydew seed oil (HSO) was effective in accelerating wound closure and enhancing tissue repair, as indicated by macroscopic, histological, and biochemical analyses, as compared with pumpkin seed oil (PSO). This effect was mediated by down-regulation of the advanced glycation end products (AGE) and its receptor (RAGE) cue, activating the cytoprotective enzymes nuclear factor erythroid 2 (Nrf2) and heme oxygenase-1 (HO-1), suppressing the inflammatory mediators tumor necrosis factor (TNF)-α, nuclear factor kappa B (NF-κB), and nod-like receptor protein 3 (NLRP3), and reducing the levels of the skin integral signaling protein connexin (CX)-43. Furthermore, immunohistochemical staining for epidermal growth factor (EGF) showed the lowest expression in the skin after treatment with HSO, indicating a well-organized and complete healing process. Other seed oils from cantaloupe and zucchini exhibited favorable activity when compared with untreated rats; however, their efficacy was comparatively lower than that of PSO and HSO. Gas chromatographic analysis of the derivatized oils warranted the superior activity of HSO to its high nutraceutical content of linoleic acid, which represented 65.9% of the fatty acid content. This study's findings validate the use of honeydew seeds as a wound-healing fixed oil and encourage further investigation into the potential of Cucurbitaceae seeds as sources of medicinally valuable plant oils.

8.
Pharmaceuticals (Basel) ; 16(10)2023 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-37895850

RESUMEN

Onion peels are often discarded, representing an unlimited amount of food by-products; however, they are a valuable source of bioactive phenolics. Thus, we utilized UPLC-MS/MS to analyze the metabolomic profiles of red (RO) and yellow (YO) onion peel extracts. The cytotoxic (SRB assay), anti-inflammatory (Griess assay), and antimicrobial (sensitivity test, MIC, antibiofilm, and SP-SDS tests) properties were assessed in vitro. Additionally, histological analysis, immunohistochemistry, and ELISA tests were conducted to investigate the healing potential in excisional skin wound injury and Candida albicans infection in vivo. RO extract demonstrated antibacterial activity, limited skin infection with C. albicans, and improved the skin's appearance due to the abundance of quercetin and anthocyanin derivatives. Both extracts reduced lipopolysaccharide-induced nitric oxide release in vitro and showed a negligible cytotoxic effect on MCF-7 and HT29 cells. When extracts were tested in vivo for their ability to promote tissue regeneration, it was found that YO peel extract had the greatest impact. Further biochemical analysis revealed that YO extract suppressed NLRP3/caspase-1 signaling and decreased inflammatory cytokines. Furthermore, YO extract decreased Notch-1 levels and boosted VEGF-mediated angiogenesis. Our findings imply that onion peel extract can effectively treat wounds by reducing microbial infection, reducing inflammation, and promoting tissue regeneration.

9.
Toxins (Basel) ; 14(5)2022 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-35622593

RESUMEN

Pregnant women usually turn to natural products to relieve pregnancy-related ailments which might pose health risks. Mentha pulegium L. (MP, Lamiaceae) is a common insect repellent, and the present work validates its abortifacient capacity, targeting morphological anomalies, biological, and behavioral consequences, compared to misoprostol. The study also includes untargeted metabolite profiling of MP extract and fractions thereof viz. methylene chloride (MecH), ethyl acetate (EtOAc), butanol (But), and the remaining liquor (Rem. Aq.) by UPLC-ESI-MS-TOF, to unravel the constituents provoking abortion. Administration of MP extract/fractions, for three days starting from day 15th of gestation, affected fetal development by disrupting the uterine and placental tissues, or even caused pregnancy termination. These effects also entailed biochemical changes where they decreased progesterone and increased estradiol serum levels, modulated placental gene expressions of both MiR-(146a and 520), decreased uterine MMP-9, and up-regulated TIMP-1 protein expression, and empathized inflammatory responses (TNF-α, IL-1ß). In addition, these alterations affected the brain's GFAP, BDNF, and 5-HT content and some of the behavioral parameters escorted by the open field test. All these incidences were also perceived in the misoprostol-treated group. A total of 128 metabolites were identified in the alcoholic extract of MP, including hydroxycinnamates, flavonoid conjugates, quinones, iridoids, and terpenes. MP extract was successful in terminating the pregnancy with minimal behavioral abnormalities and low toxicity margins.


Asunto(s)
Aborto Inducido , Lamiaceae , Mentha pulegium , MicroARNs , Misoprostol , Animales , Cromatografía Líquida de Alta Presión , Femenino , Hormonas , Humanos , Metaloproteinasa 9 de la Matriz , Placenta , Extractos Vegetales , Embarazo , Ratas , Transducción de Señal , Espectrometría de Masa por Ionización de Electrospray , Inhibidor Tisular de Metaloproteinasa-1
10.
Neurotoxicology ; 92: 77-90, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35843304

RESUMEN

The cognitive and behavioral decline observed in cancer survivors who underwent doxorubicin (DOX)-based treatment raises the need for therapeutic interventions to counteract these complications. Galangin (GAL) is a flavonoid-based phytochemical with pronounced protective effects in various neurological disorders. However, its impact on DOX-provoked neurotoxicity has not been clarified. Hence, the current investigation aimed to explore the ability of GAL to ameliorate DOX-provoked chemo-brain in rats. DOX (2 mg/kg, once/week, i.p.) and GAL (50 mg/kg, 5 times/week., via gavage) were administered for four successive weeks. The MWM and EPM tests were used to evaluate memory disruption and anxiety-like behavior, respectively. Meanwhile, targeted biochemical markers and molecular signals were examined by the aid of ELISA, Western blotting, and immune-histochemistry. In contrast to DOX-impaired rats, GAL effectively preserved hippocampal neurons, improved cognitive/behavioral functions, and enhanced the expression of the cell repair/growth index, BDNF. The antioxidant feature of GAL was confirmed by the amelioration of MDA, NO and NOX-1, along with restoring the Nrf-2/HO-1/GSH cue. In addition, GAL displayed marked anti-inflammatory properties as verified by the suppression of the HMGB1/TLR4 nexus and p-NF-κB p65 to inhibit TNF-α, IL-6, IL-1ß, and iNOS. This inhibitory impact extended to entail astrocyte activation, as evidenced by the diminution of GFAP. These beneficial effects were associated with a notable reduction in p-p38MAPK, p-JNK1/2, and p-ERK1/2, as well as the necroptosis cascade p-RIPK1/p-RIPK3/p-MLKL. Together, these pleiotropic protective impacts advocate the concurrent use of GAL as an adjuvant agent for managing DOX-driven neurodegeneration and cognitive/behavioral deficits. DATA AVAILABILITY: The authors confirm that all relevant data are included in the supplementary materials.


Asunto(s)
Disfunción Cognitiva , Doxorrubicina , Flavonoides , Animales , Antiinflamatorios/farmacología , Antioxidantes/farmacología , Biomarcadores/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Disfunción Cognitiva/inducido químicamente , Disfunción Cognitiva/tratamiento farmacológico , Disfunción Cognitiva/prevención & control , Doxorrubicina/toxicidad , Flavonoides/farmacología , Flavonoides/uso terapéutico , Factor de Transcripción de la Proteína de Unión a GA/metabolismo , Proteína HMGB1/metabolismo , Proteína HMGB1/farmacología , Proteína HMGB1/uso terapéutico , Interleucina-6/metabolismo , FN-kappa B/metabolismo , Estrés Oxidativo , Proteínas Quinasas , Ratas , Transducción de Señal , Receptor Toll-Like 4/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
11.
Pharmaceuticals (Basel) ; 16(1)2022 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-36678503

RESUMEN

Mangiferin (Mang) is a known glucosylxanthone that has proven its shielding effect against ischemia/reperfusion (Is/R). However, its full underlying mechanistic perspective against renal Is/R induced lesions is not fully revealed. Consequently, the purpose of this study is to track further non-investigated modulatory signals of Mang against the renal Is/R model involving nuclear factor erythroid 2-related factor (Nrf)2/heme oxygenase (HO)-1, peroxisome proliferator-activated receptor (PPAR)-γ/nuclear factor (NF)-κB, p38 mitogen-activated protein kinase (MAPK), and c-Jun N-terminal kinase (JNK) signaling. To ratify our aim, Mang was administrated (20 mg/kg, i.p for seven days) before the induction of bilateral Is/R. Mechanistic maneuver revealed that Mang balanced oxidative state via increasing the expression of the antioxidant Nrf2/HO-1 cue with subsequent enhancement of GSH besides MDA lessening. Additionally, Mang enhanced PPAR-γ mRNA expression and declined p-p38 MAPK and p-JNK expression with concomitant NF-κB downsizing leading to iNOS/NOx and TNF-α rebating. Furthermore, the Mang anti-apoptotic trait was affirmed by enriching Bcl-2 expression as well as decreasing Bax and caspase-3 expression. All these potentials were in the line with the molecular docking results and the improved histopathological findings and renal function biomarkers. Consequently, Mang provided plausible protective mechanisms against renal Is/R-related events, possibly by amending oxidative status, inflammatory mediators, and apoptotic cell death through the involvement of Nrf2, PPAR-γ, MAPK, JNK, and NF-κB signaling.

12.
Int Immunopharmacol ; 99: 108042, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34426107

RESUMEN

Rheumatoid arthritis (RA) is an inflammatory disease with challenging therapeutic potential due to the implication of cross-talking intracellular pathways in the pathogenesis of the disease. This study aimed to evaluate the effects of the combination therapy of atorvastatin and quercetin on glycogen synthase kinase-3 beta/ nuclear factor kappa-B/ nucleotide-binding oligomerization domain-like receptor family pyrin domain containing-3 or inflammasome (GSK-3ß/NF-KB/NLRP-3) pathway as well as on microRNAs 26b and 20a (miR-26b, miR-20a) and to investigate the possible beneficial outcomes of the combination to offer a better treatment option than methotrexate (MTX) in adjuvant-induced arthritis (AIA). Assessment of arthritis progression, serum inflammatory, and oxidative parameters were done. The tibiotarsal tissue expression of the inflammatory parameters was evaluated. Western blot analysis was done to assess the expression level of the important members in the GSK-3ß/NF-κB/NLRP-3 pathway. Furthermore, the expression level of both microRNAs and serum level of transaminases were determined. All treatments, especially the combination regimen, abated arthritis progression, the elevated serum level of inflammatory and oxidative stress parameters in arthritic rats. Moreover, They down-regulated the gene expression of the important members of the aforementioned signaling pathway, amended the tissue levels of inflammatory parameters and elevated the expression level of miR-26b and miR-20a. Finally, we concluded that the combination therapy modulated miR-26b and miR-20a as well as GSK-3ß/NF-κB/NLRP-3 pathway, provided additive anti-inflammatory and anti-oxidant effects and offered an additional hepatoprotective effect as compared to untreated arthritic rats and MTX-treated groups, suggesting its promising role to be used as replacement therapy to MTX in RA.


Asunto(s)
Atorvastatina/farmacología , Glucógeno Sintasa Quinasa 3 beta/metabolismo , MicroARNs/metabolismo , FN-kappa B/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Quercetina/farmacología , Alanina Transaminasa/sangre , Animales , Antirreumáticos/farmacología , Antirreumáticos/uso terapéutico , Artritis Experimental/tratamiento farmacológico , Artritis Experimental/metabolismo , Aspartato Aminotransferasas/sangre , Atorvastatina/uso terapéutico , Proteínas Adaptadoras de Señalización CARD/metabolismo , Proteínas Portadoras/sangre , Caspasa 1/metabolismo , Proteínas de Ciclo Celular/metabolismo , Correlación de Datos , Citocinas/metabolismo , Proteínas I-kappa B/metabolismo , Masculino , Malondialdehído/sangre , Metotrexato/farmacología , Metotrexato/uso terapéutico , MicroARNs/genética , Quercetina/uso terapéutico , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos
13.
Int Immunopharmacol ; 92: 107362, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33453674

RESUMEN

OBJECTIVE: Rheumatoid arthritis is a progressive inflammatory disease with multiple dysfunctional intracellular signaling pathways that necessitate new approaches for its management. Hence, the study aimed to inspect the ability of the combination therapy of metformin and omega-3 to modulate different signaling pathways and micro RNAs such as (miR-155, miR-146a and miR-34) as new targets in order to mitigate adjuvant-induced arthritis and compare their effect to that of methotrexate. METHODS: Fourteen days post adjuvant injection, Sprague-Dawley rats were treated orally with metformin (200 mg/kg/day) and/or omega-3 (300 mg/kg/day) or intraperitoneally with methotrexate (2 mg/kg/week) for 4 weeks. RESULTS AND CONCLUSION: All drug treatments amended the arthrogram score and hind paw swelling as well as decreased serum tumor necrosis factor (TNF)-α and interleukin (IL)-1ß levels. On the molecular level, all therapies activated phospho-5'adenosine monophosphate-activated protein kinase (p-AMPK) and protein phosphatase 2A (PP2A), while they inhibited phospho-mammalian target of rapamycin (p-mTOR), phospho-signal transducers and activators of transcription (p-STAT3), nuclear factor (NF)-κB p65 subunit, phosho38 mitogen-activated protein kinase (p38 MAPK) and phospho- c-Jun N-terminal kinase (p-JNK). In addition, they decreased the elevated expression level of miRNA-155, 146a and increased the expression level of miRNA-34 and they decreased the expression level of retinoic acid receptor related orphan receptor γT (RORγT) and increased that of fork head box P3 (FOXP3), correcting Th17/Treg cells balance. On most of the aforementioned parameters, the effect of the combination therapy was comparable to that of methotrexate, emphasizing that this combination possesses better additive anti-inflammatory effect than either drug when used alone. In addition, the combination was capable of normalizing the serum transaminases levels as compared to untreated group offering hepatoprotective effect and suggesting the possibility of its use as a replacement therapeutic strategy for MTX in rheumatoid arthritis.


Asunto(s)
Antiinflamatorios/farmacología , Artritis Experimental/tratamiento farmacológico , Aceites de Pescado/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Metformina/farmacología , Metotrexato/toxicidad , MicroARNs/genética , Animales , Antimetabolitos Antineoplásicos/toxicidad , Artritis Experimental/inducido químicamente , Artritis Experimental/inmunología , Artritis Experimental/metabolismo , Modelos Animales de Enfermedad , Quimioterapia Combinada , Hipoglucemiantes/farmacología , Interleucina-1beta/sangre , Masculino , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Ratas , Ratas Sprague-Dawley , Transducción de Señal , Linfocitos T Reguladores/metabolismo , Factor de Necrosis Tumoral alfa/sangre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA