Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(1)2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38203740

RESUMEN

Adolescent Idiopathic Scoliosis (AIS) is the most common form of three-dimensional spinal disorder in adolescents between the ages of 10 and 18 years of age, most commonly diagnosed in young women when severe disease occurs. Patients with AIS are characterized by abnormal skeletal growth and reduced bone mineral density. The etiology of AIS is thought to be multifactorial, involving both environmental and genetic factors, but to date, it is still unknown. Therefore, it is crucial to further investigate the molecular pathogenesis of AIS and to identify biomarkers useful for predicting curve progression. In this perspective, the relative abundance of a panel of microRNAs (miRNAs) was analyzed in the plasma of 20 AIS patients and 10 healthy controls (HC). The data revealed a significant group of circulating miRNAs dysregulated in AIS patients compared to HC. Further bioinformatic analyses evidenced a more restricted expression of some miRNAs exclusively in severe AIS females. These include some members of the miR-30 family, which are considered promising regulators for treating bone diseases. We demonstrated circulating extracellular vesicles (EVs) from severe AIS females contained miR-30 family members and decreased the osteogenic differentiation of mesenchymal stem cells. Proteomic analysis of EVs highlighted the expression of proteins associated with orthopedic disease. This study provides preliminary evidence of a miRNAs signature potentially associated with severe female AIS and suggests the corresponding vesicular component may affect cellular mechanisms crucial in AIS, opening the scenario for in-depth studies on prognostic differences related to gender and grade.


Asunto(s)
MicroARN Circulante , MicroARNs , Escoliosis , Adolescente , Niño , Femenino , Humanos , MicroARN Circulante/genética , MicroARNs/genética , Osteogénesis/genética , Proteómica , Escoliosis/genética
2.
Int J Mol Sci ; 24(5)2023 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-36901745

RESUMEN

Osteoarthritis (OA) is a degenerative bone disease that involves the microenvironment and macroenvironment of joints. Progressive joint tissue degradation and loss of extracellular matrix elements, together with different grades of inflammation, are important hallmarks of OA disease. Therefore, the identification of specific biomarkers to distinguish the stages of disease becomes a primary necessity in clinical practice. To this aim, we investigated the role of miR203a-3p in OA progression starting from the evidence obtained by osteoblasts isolated from joint tissues of OA patients classified according to different Kellgren and Lawrence (KL) grading (KL ≤ 3 and KL > 3) and hMSCs treated with IL-1ß. Through qRT-PCR analysis, it was found that osteoblasts (OBs) derived from the KL ≤ 3 group expressed high levels of miR203a-3p and low levels of ILs compared with those of OBs derived from the KL > 3 group. The stimulation with IL-1ß improved the expression of miR203a-3p and the methylation of the IL-6 promoter gene, favoring an increase in relative protein expression. The gain and loss of function studies showed that the transfection with miR203a-3p inhibitor alone or in co-treatments with IL-1ß was able to induce the expression of CX-43 and SP-1 and to modulate the expression of TAZ, in OBs derived from OA patients with KL ≤ 3 compared with KL > 3. These events, confirmed also by qRT-PCR analysis, Western blot, and ELISA assay performed on hMSCs stimulated with IL-1ß, supported our hypothesis about the role of miR203a-3p in OA progression. The results suggested that during the early stage, miR203a-3p displayed a protective role reducing the inflammatory effects on CX-43, SP-1, and TAZ. During the OA progression the downregulation of miR203a-3p and consequently the upregulation of CX-43/SP-1 and TAZ expression improved the inflammatory response and the reorganization of the cytoskeleton. This role led to the subsequent stage of the disease, where the aberrant inflammatory and fibrotic responses determined the destruction of the joint.


Asunto(s)
MicroARNs , Osteoartritis , Humanos , Condrocitos/metabolismo , Inflamación/metabolismo , Interleucina-1beta/metabolismo , MicroARNs/genética , Osteoartritis/metabolismo , Regulación hacia Arriba
3.
Int J Mol Sci ; 25(1)2023 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-38203453

RESUMEN

There is increasing interest in using magnesium (Mg) alloy orthopedic devices because of their mechanical properties and bioresorption potential. Concerns related to their rapid degradation have been issued by developing biodegradable micro- and nanostructured coatings to enhance corrosion resistance and limit the release of hydrogen during degradation. This systematic review based on four databases (PubMed®, Embase, Web of Science™ and ScienceDirect®) aims to present state-of-the-art strategies, approaches and materials used to address the critical factors currently impeding the utilization of Mg alloy devices. Forty studies were selected according to PRISMA guidelines and specific PECO criteria. Risk of bias assessment was conducted using OHAT and SYRCLE tools for in vitro and in vivo studies, respectively. Despite limitations associated with identified bias, the review provides a comprehensive analysis of preclinical in vitro and in vivo studies focused on manufacturing and application of Mg alloys in orthopedics. This attests to the continuous evolution of research related to Mg alloy modifications (e.g., AZ91, LAE442 and WE43) and micro- and nanocoatings (e.g., MAO and MgF2), which are developed to improve the degradation rate required for long-term mechanical resistance to loading and excellent osseointegration with bone tissue, thereby promoting functional bone regeneration. Further research is required to deeply verify the safety and efficacy of Mg alloys.


Asunto(s)
Procedimientos Ortopédicos , Ortopedia , Magnesio/farmacología , Osteogénesis , Aleaciones/farmacología
4.
Int J Mol Sci ; 23(23)2022 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-36499741

RESUMEN

The existence of a tight relationship between inflammation and epigenetics that in primary breast tumor cells can lead to tumor progression and the formation of bone metastases was investigated. It was highlighted how the induction of tumor progression and bone metastasis by Interleukin-1 beta, in a non-metastatic breast cancer cell line, MCF-7, was dependent on the de-methylating actions of ten-eleven translocation proteins (TETs). In fact, the inhibition of their activity by the Bobcat339 molecule, an inhibitor of TET enzymes, determined on the one hand, the modulation of the epithelial-mesenchymal transition process, and on the other hand, the reduction in the expression of markers of bone metastasis, indicating that the epigenetic action of TETs is a prerequisite for IL-1ß-dependent tumor progression and bone metastasis formation.


Asunto(s)
Neoplasias Óseas , Neoplasias de la Mama , Neoplasias Inflamatorias de la Mama , Femenino , Humanos , Neoplasias Óseas/genética , Neoplasias de la Mama/genética , Línea Celular Tumoral , Epigénesis Genética , Transición Epitelial-Mesenquimal/genética , Interleucina-1beta/farmacología , Células MCF-7 , Dioxigenasas/antagonistas & inhibidores , Proteínas de Unión al ADN/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología
5.
Int J Mol Sci ; 23(2)2022 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-35054891

RESUMEN

Osteosarcoma (OS) is the most common primary bone tumor mainly occurring in young adults and derived from primitive bone-forming mesenchyme. OS develops in an intricate tumor microenvironment (TME) where cellular function regulated by microRNAs (miRNAs) may affect communication between OS cells and the surrounding TME. Therefore, miRNAs are considered potential therapeutic targets in cancer and one of the goals of research is to accurately define a specific signature of a miRNAs, which could reflect the phenotype of a particular tumor, such as OS. Through NGS approach, we previously found a specific molecular profile of miRNAs in OS and discovered 8 novel miRNAs. Among these, we deepen our knowledge on the fifth candidate renamed now miR-CT3. MiR-CT3 expression was low in OS cells when compared with human primary osteoblasts and healthy bone. Through TargetScan, VEGF-A was predicted as a potential biological target of miR-CT3 and luciferase assay confirmed it. We showed that enforced expression of miR-CT3 in two OS cell lines, SAOS-2 and MG-63, reduced expression of VEGF-A mRNA and protein, inhibiting tumor angiogenesis. Enforced expression of miR-CT3 also reduced OS cell migration and invasion as confirmed by soft agar colony formation assay. Interestingly, we found that miR-CT3 behaves inducing the activation of p38 MAP kinase pathway and modulating the epithelial-mesenchymal transition (EMT) proteins, in particular reducing Vimentin expression. Overall, our study highlights the novel role of miR-CT3 in regulating tumor angiogenesis and progression in OS cells, linking also to the modulation of EMT proteins.


Asunto(s)
Neoplasias Óseas , Transición Epitelial-Mesenquimal , Sistema de Señalización de MAP Quinasas , MicroARNs , Neovascularización Patológica , Osteosarcoma , Humanos , Neoplasias Óseas/genética , Neoplasias Óseas/patología , Línea Celular , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Células Endoteliales de la Vena Umbilical Humana , MicroARNs/genética , MicroARNs/fisiología , Invasividad Neoplásica , Neovascularización Patológica/genética , Osteoblastos/metabolismo , Osteoblastos/fisiología , Osteosarcoma/genética , Osteosarcoma/secundario
6.
Int J Mol Sci ; 22(5)2021 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-33671114

RESUMEN

Osteoarthritis (OA) is a degenerative bone disease that involved micro and macro-environment of joints. To date, there are no radical curative treatments for OA and novel therapies are mandatory. Recent evidence suggests the role of miRNAs in OA progression. In our previous studies, we demonstrated the role of miR-31-5p and miR-33a families in different bone regeneration signaling. Here, we investigated the role of miR-31-5p and miR-33a-5p in OA progression. A different expression of miR-31-5p and miR-33a-5p into osteoblasts and chondrocytes isolated from joint tissues of OA patients classified in based on different Kellgren and Lawrence (KL) grading was highlighted; and through a bioinformatic approach the common miRNAs target Specificity proteins (Sp1) were identified. Sp1 regulates the expression of gap junction protein Connexin43 (Cx43), which in OA drives the modification of i) osteoblasts and chondrocytes genes expression, ii) joint inflammation cytokines releases and iii) cell functions. Concerning this, thanks to gain and loss of function studies, the possible role of Sp1 as a modulator of CX43 expression through miR-31-5p and miR-33a-5p action was also evaluated. Finally, we hypothesize that both miRNAs cooperate to modulate the expression of SP1 in osteoblasts and chondrocytes and interfering, consequently, with CX43 expression, and they might be further investigated as new possible biomarkers for OA.


Asunto(s)
Conexina 43/metabolismo , Regulación de la Expresión Génica , MicroARNs/genética , Osteoartritis/patología , Osteoblastos/patología , Factor de Transcripción Sp1/metabolismo , Adulto , Anciano , Células Cultivadas , Conexina 43/genética , Femenino , Estudios de Seguimiento , Humanos , Masculino , Persona de Mediana Edad , Osteoartritis/genética , Osteoartritis/metabolismo , Osteoblastos/metabolismo , Pronóstico , Transducción de Señal , Factor de Transcripción Sp1/genética
7.
Carcinogenesis ; 41(5): 666-677, 2020 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-31294446

RESUMEN

Bone microenvironment provides growth and survival signals essential for osteosarcoma (OS) initiation and progression. OS cells regulate communications inside tumor microenvironment through different ways and, among all, tumor-derived exosomes support cancer progression and metastasis. To define the contribution of OS-derived exosomes inside the microenvironment, we investigated the effects induced in bone remodeling mechanism and tumor angiogenesis. We demonstrated that exosomes promoted osteoclasts differentiation and bone resorption activity. Furthermore, exosomes potentiated tube formation of endothelial cells and increased angiogenic markers expression. We therefore investigated the micro RNA (miRNA) cargo from exosomes and their parental cells by performing small RNA sequencing through NGS Illumina platform. Hierarchical clustering highlighted a unique molecular profile of exosomal miRNA; bioinformatic analysis by DIANA-mirPath revealed that miRNAs identified take part in various biological processes and carcinogenesis. Among these miRNAs, some were already known for their involvement in the tumor microenvironment establishment, as miR-148a and miR-21-5p. Enforced expression of miR-148a and miR-21-5p in Raw264.7 and hTert immortalized umbilical vein endothelial cells recapitulated the effects induced by exosomes. Overall, our study highlighted the importance of OS exosomes in tumor microenvironment also by a specific packaging of miRNAs.


Asunto(s)
Biomarcadores de Tumor/genética , Neoplasias Óseas/patología , Endotelio Vascular/patología , Exosomas/patología , MicroARNs/genética , Neovascularización Patológica/patología , Osteosarcoma/patología , Neoplasias Óseas/genética , Neoplasias Óseas/metabolismo , Movimiento Celular , Proliferación Celular , Células Cultivadas , Endotelio Vascular/metabolismo , Exosomas/genética , Exosomas/metabolismo , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Neovascularización Patológica/genética , Neovascularización Patológica/metabolismo , Osteosarcoma/genética , Osteosarcoma/metabolismo , Microambiente Tumoral
8.
Int J Mol Sci ; 20(7)2019 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-30925808

RESUMEN

The roles of low-intensity pulsed ultrasound (LIPUS) and microRNAs (miRNAs) on hMSCs commitments have already been investigated; however, the effects of the application of their co-treatments in an in vitro cell model are still unknown. Our previous studies demonstrated that (i) LIPUS modulated hMSCs cytoskeletal organization and (ii) miRNA-675-5p have a role in HIF-1α signaling modulation during hMSCs osteoblast commitment. We investigated for the first time the role of LIPUS as promoter tool for miRNA expression. Thanks to bioinformatic analysis, we identified miR-31-5p as a LIPUS-induced miRNA and investigated its role through in vitro studies of gain and loss of function. Results highlighted that LIPUS stimulation induced a hypoxia adaptive cell response, which determines a reorganization of cell membrane and cytoskeleton proteins. MiR-31-5p gain and loss of function studies, demonstrated as miR-31-5p overexpression, were able to induce hypoxic and cytoskeletal responses. Moreover, the co-treatments LIPUS and miR-31-5p inhibitor abolished the hypoxic responses including angiogenesis and the expression of Rho family proteins. MiR-31-5p was identified as a LIPUS-mechanosensitive miRNAs and may be considered a new therapeutic option to promote or abolish hypoxic response and cytoskeletal organization on hMSCs during the bone regeneration process.


Asunto(s)
Proteínas del Citoesqueleto/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Células Madre Mesenquimatosas/efectos de la radiación , MicroARNs/genética , Ondas Ultrasónicas , Regulación hacia Arriba/efectos de la radiación , Diferenciación Celular , Línea Celular , Humanos , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Osteoblastos/citología
9.
Cytotherapy ; 19(12): 1412-1425, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-29111380

RESUMEN

BACKGROUND AIMS: During bone formation, angiogenesis and osteogenesis are regulated by hypoxia, which is able to induce blood vessel formation, as well as recruit and differentiate human mesenchymal stromal cells (hMSCs). The molecular mechanisms involved in HIF-1α response and hMSC differentiation during bone formation are still unclear. This study aimed to investigate the synergistic role of hypoxia and hypoxia-mimetic microRNA miR-675-5p in angiogenesis response and osteo-chondroblast commitment of hMSCs. METHODS: By using a suitable in vitro cell model of hMSCs (maintained in hypoxia or normoxia), the role of HIF-1α and miR-675-5p in angiogenesis and osteogenesis coupling was investigated, using fluorescence-activated cell sorting (FACS), gene expression and protein analysis. RESULTS: Hypoxia induced miR-675-5p expression and a hypoxia-angiogenic response, as demonstrated by increase in vascular endothelial growth factor messenger RNA and protein release. MiR-675-5p overexpression in normoxia promoted the down-regulation of MSC markers and the up-regulation of osteoblast and chondroblast markers, as demonstrated by FACS and protein analysis. Moreover, miR-675-5p depletion in a low-oxygen condition partially abolished the hypoxic response, including angiogenesis, and in particular restored the MSC phenotype, demonstrated by cytofluorimetric analysis. In addition, current preliminary data suggest that the expression of miR-675-5p during hypoxia plays an additive role in sustaining Wnt/ß-catenin pathways and the related commitment of hMSCs during bone ossification. DISCUSSION: MiR-675-5p may trigger complex molecular mechanisms that promote hMSC osteoblastic differentiation through a dual strategy: increasing HIF-1α response and activating Wnt/ß-catenin signaling.


Asunto(s)
Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Células Madre Mesenquimatosas/citología , MicroARNs/genética , Neovascularización Fisiológica/fisiología , Osteogénesis/genética , Diferenciación Celular/genética , Hipoxia de la Célula/genética , Células Cultivadas , Regulación de la Expresión Génica , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Células Madre Mesenquimatosas/fisiología , Osteoblastos/citología , Osteoblastos/fisiología , Activación Transcripcional/genética , Regulación hacia Arriba , Factor A de Crecimiento Endotelial Vascular/genética , beta Catenina/genética , beta Catenina/metabolismo
10.
J Cell Physiol ; 229(12): 2106-16, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24819167

RESUMEN

The analysis of deregulated microRNAs (miRNAs) is emerging as a novel approach to disclose the regulation of tumor suppressor or tumor promoting pathways in tumor cells. Targeting aberrantly expressed miRNAs is therefore a promising strategy for cancer treatment. By miRNA profiling of primary plasma cells from multiple myeloma (MM) patients, we previously reported increased miR-125a-5p levels associated to specific molecular subgroups. On these premises, we aimed at investigating the biological effects triggered by miR-125a-5p modulation in MM cells. Expression of p53 pathway-related genes was down-regulated in MM cells transfected with miR-125a-5p mimics. Luciferase reporter assays confirmed specific p53 targeting at 3'UTR level by miR-125a-5p mimics. Interestingly, bone marrow stromal cells (BMSCs) affected the miR-125a-5p/p53 axis, since adhesion of MM cells to BMSCs strongly up-regulated miR-125a-5p levels, while reduced p53 expression. Moreover, ectopic miR-125a-5p reduced, while miR-125-5p inhibitors promoted, the expression of tumor suppressor miR-192 and miR-194, transcriptionally regulated by p53. Lentiviral-mediated stable inhibition of miR-125a-5p expression in wild-type p53 MM cells dampened cell growth, increased apoptosis and reduced cell migration. Importantly, inhibition of in vitro MM cell proliferation and migration was also achieved by synthetic miR-125a-5p inhibitors and was potentiated by the co-expression of miR-192 or miR-194. Taken together, our data indicate that miR-125a-5p antagonism results in the activation of p53 pathway in MM cells, underlying the crucial role of this miRNA in the biopathology of MM and providing the molecular rationale for the combinatory use of miR-125a inhibitors and miR-192 or miR-194 mimics for MM treatment.


Asunto(s)
Redes Reguladoras de Genes , MicroARNs/genética , Mieloma Múltiple/genética , Proteína p53 Supresora de Tumor/genética , Regiones no Traducidas 3'/genética , Apoptosis/genética , Movimiento Celular/genética , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Genes Supresores de Tumor , Humanos , MicroARNs/antagonistas & inhibidores , Mieloma Múltiple/patología , Proteína p53 Supresora de Tumor/metabolismo
11.
J Biomed Mater Res A ; 112(6): 841-851, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38185851

RESUMEN

This study adopts an in vitro method to recapitulate the behavior of Saos-2 cells, using a system composed of a perfusion bioreactor and poly-L-lactic acid (PLLA) scaffold fabricated using the low-cost thermally-induced phase separation (TIPS) technique. Four distinct scaffold morphologies with different pore sizes were fabricated, characterized by Scanning electron microscopy and micro-CT analysis and tested with osteosarcoma cells under static and dynamic environments to identify the best morphology for cellular growth. In order to accomplish this purpose, cell growth and matrix deposition of the Saos-2 osteosarcoma cell line were assessed using Picogreen and OsteoImage assays. The obtained data allowed us to identify the morphology that better promotes Saos-2 cellular activity in static and dynamic conditions. These findings provided valuable insights into scaffold design and fabrication strategies, emphasizing the importance of the dynamic culture to recreate an appropriate 3D osteosarcoma model. Remarkably, the gradient scaffold exhibits promise for osteosarcoma applications, offering the potential for targeted tissue engineering approaches.


Asunto(s)
Osteosarcoma , Andamios del Tejido , Humanos , Poliésteres/farmacología , Ingeniería de Tejidos/métodos
12.
Colloids Surf B Biointerfaces ; 243: 114154, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39137528

RESUMEN

This work investigated the range of substitution of two biologically relevant ions, namely Mn2+ and Co2+, into the structure of ß-tricalcium phosphate, as well as their influence on bone cells response. To this aim, ß-TCP was synthesized by solid state reaction in the presence of increasing amount of the substituent ions. The results of the X-ray diffraction analysis reveal that just limited amounts of these ions can enter into the ß-TCP structure: 15 at% and 20 at% for cobalt and manganese, respectively. Substitution provokes aggregation of the micrometric particles and reduction of the lattice constants. In particular, the dimension of the c-parameter exhibits a discontinuity at about 10 at% for both cations, although with different trend. Moreover, Rietveld refinement demonstrates a clear preference of both manganese and cobalt for the octahedral site (V). The influence of these ions on cell response was tested on osteoblast, osteoclast and endothelial cells. The results indicate that the presence of manganese promotes a good osteoblast viability, significantly enhances the expression of osteoblast key genes and the angiogenic process of endothelial cells, while inhibiting osteoclast resorption. At variance, osteoblast viability appears reduced in the presence of Co samples, on which osteoblast genes reach higher expression than on ß-TCP just in a few cases. On the other hand, the results clearly show that cobalt significantly stimulates the angiogenic process and inhibits osteoclast resorption.


Asunto(s)
Fosfatos de Calcio , Cobalto , Manganeso , Osteoblastos , Fosfatos de Calcio/química , Fosfatos de Calcio/farmacología , Manganeso/química , Manganeso/farmacología , Cobalto/química , Cobalto/farmacología , Osteoblastos/efectos de los fármacos , Osteoblastos/citología , Osteoblastos/metabolismo , Supervivencia Celular/efectos de los fármacos , Humanos , Osteoclastos/efectos de los fármacos , Osteoclastos/metabolismo , Osteoclastos/citología , Difracción de Rayos X , Animales , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Ratones
13.
Front Bioeng Biotechnol ; 12: 1412584, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39055342

RESUMEN

Introduction: The development of reliable treatments for infected or potentially infected bone loss resulting from open fractures and non-unions is extremely urgent, especially to reduce the prolonged courses of antimicrobial therapy to which affected patients are subjected. Numerous bone graft substitutes have been used over the years, but there are currently no effective solutions to treat critical bone loss, especially in the presence of infection. The present study evaluated the use of the biomorphic calcium phosphate bone scaffold b. Bone™, based on a next-generation resorbable biomimetic biomaterial, in bone reconstruction surgery in cases of infection. Methods: Using an "in vitro 3D bone fracture model" to predict the behavior of this drug delivery system during critical bone loss at an infected (or potentially infected) site, the effects of scaffolds loaded with gentamicin or vancomycin on the viability and differentiation capacity of human mesenchymal stem cells (hMSCs) were evaluated. Results: This scaffold, when loaded with gentamicin or vancomycin, exhibits a typical drug release curve that determines the inhibitory effects on the growth of Staphylococcus aureus, Enterococcus faecalis, and Escherichia coli, as well as relative biofilm formation. Discussion: The study demonstrates that b.bone scaffolds can effectively address key challenges in orthopedic surgery and patient care by inhibiting bacterial growth and biofilm formation through rapid, potent antibiotic release, reducing the risk of treatment failure due to resistance, and providing a promising solution for bone infections and improved patient outcomes. Future studies could explore the combination of different antibiotics on these scaffolds for more tailored and effective treatments against post-traumatic osteomyelitis pathogens.

14.
Nutrients ; 16(1)2023 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-38201942

RESUMEN

Osteoarthritis (OA) is a degenerative joint disease that is age-related and progressive. It causes the destruction of articular cartilage and underlying bone, often aggravated by inflammatory processes and oxidative stresses. This pathology impairs the quality of life of the elderly, causing pain, reduced mobility, and functional disabilities, especially in obese patients. Phytochemicals with anti-inflammatory and antioxidant activities may be used for long-term treatment of OA, either in combination with current anti-inflammatories and painkillers, or as an alternative to other products such as glucosamine and chondroitin, which improve cartilage structure and elasticity. The current systematic review provides a comprehensive understanding of the use of flavonoids. It highlights chondrocyte, cartilage, and subchondral bone activities, with a particular focus on their nutrigenomic effects. The molecular mechanisms of these molecules demonstrate how they can be used for the prevention and treatment of OA in the elderly population. However, clinical trials are still needed for effective use in clinical practice.


Asunto(s)
Cartílago Articular , Osteoartritis , Anciano , Humanos , Flavonoides/farmacología , Flavonoides/uso terapéutico , Nutrigenómica , Osteoartritis/tratamiento farmacológico , Calidad de Vida
15.
Pharmaceuticals (Basel) ; 15(3)2022 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-35337142

RESUMEN

Osteosarcoma (OS) is the most common primary bone sarcoma affecting the life of pediatric patients. The clinical treatment faces numerous difficulties, including the adverse effects of chemotherapies, chemoresistance, and recurrences. In this study, the effects of resveratrol (RSV), a natural polyphenol, on OS cell lines were investigated to evaluate its action as an adjuvant therapy to the current chemotherapy regimens. RSV exhibited multiple tumor-suppressing activities on OS cell lines, inducing a series of critical events. We found (1) a cell growth inhibition due to an increase in cell distress, which was, in part, due to the involvement of the AKT and caspase-3 pathways, (2) an increase in cellular differentiation due to major gene expression levels of the osteoblastic differentiation genes, (3) an inhibition of IL-6 secretion due to an epigenetic effect on the IL-6 promoter, and (4) an inhibition of OS cells migration related to the decrease in IL-8 secretion levels due to an epigenetic effect on its promoter. Finally, the cotreatment of RSV with doxorubicin and cisplatin increased their cytotoxic effect on OS cells. Although further investigations are mandatory, it seems RSV might be a promising therapeutic adjuvant agent for OS cell treatment, exerting an antitumor effect when combined with chemotherapy.

16.
Trends Endocrinol Metab ; 32(7): 515-529, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33895073

RESUMEN

The development of progressive osteopenia and osteoporosis (OP) is due to the imbalance between bone resorption and bone formation, determining a lower bone resistance, major risks of fractures, with consequent pain and functional limitations. Flavonoids, a class of polyphenols, have been extensively studied for their therapeutic activities against bone resorption, but less attention has been given to a whole series of molecules belonging to the polyphenolic compounds. However, these classes have begun to be studied for the treatment of OP. In this systematic review, comprehensive information is provided on non-flavonoid polyphenolic compounds, and we highlight pathways implicated in the action of these molecules that act often epigenetically, and their possible use for OP treatment and prevention.


Asunto(s)
Resorción Ósea , Osteoporosis , Flavonoides/uso terapéutico , Humanos , Osteogénesis , Osteoporosis/tratamiento farmacológico , Polifenoles/farmacología , Polifenoles/uso terapéutico
17.
Trends Endocrinol Metab ; 32(2): 76-94, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33288387

RESUMEN

Imbalance of bone homeostasis, with excessive bone resorption compared with bone formation, leads to the development of progressive osteopenia leading to lower bone resistance to load, with consequent pain and functional limitations. Phytochemicals with therapeutic and preventive effects against bone resorption have recently received increasing attention since they are potentially more suitable for long-term use than traditional therapeutic chemical compounds. In this systematic review of the literature of the past 5 years, comprehensive information is provided on flavonoids with potential antiresorption and pro-osteogenic effects. It aims to highlight the molecular mechanisms of these molecules, often epigenetic, and their possible pharmacological use, which is of great importance for the prevention and treatment of osteoporosis (OP).


Asunto(s)
Flavonoides/metabolismo , Osteoporosis/metabolismo , Animales , Humanos , Osteoblastos/metabolismo , Osteoclastos/metabolismo
18.
Trends Endocrinol Metab ; 32(11): 846-861, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34481733

RESUMEN

Lower bone resistance to load is due to the imbalance of bone homeostasis, where excessive bone resorption, compared with bone formation, determines a progressive osteopenia, leading to a high risk of fractures and consequent pain and functional limitations. Terpenoids, with their activities against bone resorption, have recently received increased attention from researchers. They are potentially more suitable for long-term use compared with traditional therapeutics. In this review of the literature of the past 5 years, we provide comprehensive information on terpenoids, with their anti-osteoporotic effects, highlighting molecular mechanisms that are often in epigenetic key and a possible pharmacological use in osteoporosis prevention and treatment.


Asunto(s)
Resorción Ósea , Fracturas Óseas , Osteoporosis , Resorción Ósea/tratamiento farmacológico , Huesos , Humanos , Osteoporosis/tratamiento farmacológico , Terpenos/uso terapéutico
19.
Noncoding RNA ; 6(3)2020 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-32764460

RESUMEN

Increasing evidence indicates that extracellular vesicles (EVs) released from both tumor cells and the cells of the bone marrow microenvironment contribute to the pathobiology of multiple myeloma (MM). Recent studies on the mechanisms by which EVs exert their biological activity have indicated that the non-coding RNA (ncRNA) cargo is key in mediating their effect on MM development and progression. In this review, we will first discuss the role of EV-associated ncRNAs in different aspects of MM pathobiology, including proliferation, angiogenesis, bone disease development, and drug resistance. Finally, since ncRNAs carried by MM vesicles have also emerged as a promising tool for early diagnosis and therapy response prediction, we will report evidence of their potential use as clinical biomarkers.

20.
Curr Med Chem ; 27(2): 187-215, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-29956610

RESUMEN

Chemoprevention is based on the use of non-toxic, pharmacologically active agents to prevent tumor progression. In this regard, natural dietary agents have been described by the most recent literature as promising tools for controlling onset and progression of malignancies. Extensive research has been so far performed to shed light on the effects of natural products on tumor growth and survival, disclosing the most relevant signal transduction pathways targeted by such compounds. Overall, anti-inflammatory, anti-oxidant and cytotoxic effects of dietary agents on tumor cells are supported either by results from epidemiological or animal studies and even by clinical trials. Multiple myeloma is a hematologic malignancy characterized by abnormal proliferation of bone marrow plasma cells and subsequent hypercalcemia, renal dysfunction, anemia, or bone disease, which remains incurable despite novel emerging therapeutic strategies. Notably, increasing evidence supports the capability of dietary natural compounds to antagonize multiple myeloma growth in preclinical models of the disease, underscoring their potential as candidate anti-cancer agents. In this review, we aim at summarizing findings on the anti-tumor activity of dietary natural products, focusing on their molecular mechanisms, which include inhibition of oncogenic signal transduction pathways and/or epigenetic modulating effects, along with their potential clinical applications against multiple myeloma and its related bone disease.


Asunto(s)
Mieloma Múltiple , Animales , Antineoplásicos , Enfermedades Óseas , Huesos , Mieloma Múltiple/prevención & control , Mieloma Múltiple/terapia , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA