Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Cardiovasc Res ; 75(2): 229-39, 2007 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-17559822

RESUMEN

The Ras superfamily of small GTPases cycle between inactive GDP-bound and active GTP-bound states to modulate a diverse array of processes involved in cellular growth control. While the basic mechanisms by which GTPase regulatory proteins regulate GTPase substrates have been revealed through numerous studies, detailed studies into the mechanism(s) of free radical-mediated GTPase regulation have only more recently been tackled. This article reviews the mechanism of free radical-mediated GTPase regulation and shows nitric oxide can serve as important regulator of small GTPase proteins (i.e. Ras and RhoA) through protein modifications such as S-nitrosation.


Asunto(s)
Células Endoteliales/metabolismo , GTP Fosfohidrolasas/metabolismo , Óxido Nítrico/metabolismo , Transducción de Señal/fisiología , Animales , Cisteína/metabolismo , Humanos , Nitrosación , Oxidación-Reducción
2.
Biochem J ; 397(2): 329-36, 2006 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-16569214

RESUMEN

nNOS (neuronal nitric oxide synthase) is a constitutively expressed enzyme responsible for the production of NO* from L-arginine and O2. NO* acts as both an intra- and an inter-cellular messenger that mediates a variety of signalling pathways. Previous studies from our laboratory have demonstrated that nNOS production of NO* blocks Ca2+-ionophore-induced activation of ERK1/2 (extracellular-signal-regulated kinase 1/2) of the mitogen-activated protein kinases through a mechanism involving Ras G-proteins and Raf-1 kinase. Herein we describe a mechanism by which NO* blocks Ca2+-mediated ERK1/2 activity through direct modification of H-Ras. Ca2+-mediated ERK1/2 activation in NO*-producing cells could be restored by exogenous expression of constitutively active mitogen-activated protein kinase kinase 1. In contrast, exogenous expression of constitutively active mutants of Raf-1 and H-Ras only partially restored ERK1/2 activity, by 50% and 10% respectively. On the basis of these findings, we focused on NO*-mediated mechanisms of H-Ras inhibition. Assays for GTP loading and H-Ras interactions with the Ras-binding domain on Raf-1 demonstrated a decrease in H-Ras activity in the presence of NO*. We demonstrate that S-nitrosylation of H-Ras occurs in nNOS-expressing cells activated with Ca2+ ionophore. Mutation of a putative nitrosylation site at Cys118 inhibited S-nitrosylation and restored ERK1/2 activity by constitutively active H-Ras even in the presence of NO*. These findings indicate that intracellular generation of NO* by nNOS leads to S-nitrosylation of H-Ras, which interferes with Raf-1 activation and propagation of signalling through ERK1/2.


Asunto(s)
Calcio/farmacología , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Óxido Nítrico Sintasa de Tipo I/fisiología , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Apoptosis , Línea Celular , Humanos , Ionóforos/farmacología , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Modelos Biológicos , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo I/metabolismo , Proteínas Proto-Oncogénicas c-raf/metabolismo , Transducción de Señal
3.
AAPS J ; 14(1): 19-22, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22130775

RESUMEN

PURPOSE: A generic product must meet the standards established by the Food and Drug Administration (FDA) to be approved for marketing in the USA. FDA approves a generic product for marketing if it is proved to be therapeutically equivalent to the reference product. Bioequivalence (BE) between a proposed generic product and its corresponding reference product is one of the major components of therapeutic equivalence. These approvals may be delayed if the BE portion of the submission is determined to be deficient. Many of these BE deficiencies recur commonly and can be avoided. METHOD: We conducted a survey of the BE submissions to abbreviated new drug applications (ANDAs) over years 2001 to 2008 to identify the most commonly occurring BE deficiencies. RESULTS: Recurring deficiencies are found in a majority of the ANDAs reviewed by FDA's Division of Bioequivalence. The most common deficiencies were the two deficiencies related to dissolution (method and specifications) found in 23.3% of the applications and analytical method validation and/or report found in 16.5% of the applications. The approval of generic drugs would be greatly accelerated if these deficiencies could be avoided.


Asunto(s)
Aprobación de Drogas/estadística & datos numéricos , Medicamentos Genéricos/normas , United States Food and Drug Administration , Documentación/normas , Medicamentos Genéricos/farmacocinética , Humanos , Equivalencia Terapéutica , Estados Unidos
4.
Infect Immun ; 75(8): 3894-901, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17502390

RESUMEN

The ability of the endospore-forming, gram-positive bacterium Bacillus anthracis to survive in activated macrophages is key to its germination and survival. In a previous publication, we discovered that exposure of primary murine macrophages to B. anthracis endospores upregulated NOS 2 concomitant with an .NO-dependent bactericidal response. Since NOS 2 also generates O(2).(-), experiments were designed to determine whether NOS 2 formed peroxynitrite (ONOO(-)) from the reaction of .NO with O(2).(-) and if so, was ONOO(-) microbicidal toward B. anthracis. Our findings suggest that ONOO(-) was formed upon macrophage infection by B. anthracis endospores; however, ONOO(-) does not appear to exhibit microbicidal activity toward this bacterium. In contrast, the exosporium of B. anthracis, which exhibits arginase activity, protected B. anthracis from macrophage-mediated killing by decreasing .NO levels in the macrophage. Thus, the ability of B. anthracis to subvert .NO production has important implications in the control of B. anthracis-induced infection.


Asunto(s)
Antibacterianos/inmunología , Bacillus anthracis/inmunología , Macrófagos Peritoneales/microbiología , Viabilidad Microbiana , Óxido Nítrico/metabolismo , Animales , Antibacterianos/metabolismo , Antibacterianos/farmacología , Células Cultivadas , Macrófagos Peritoneales/metabolismo , Ratones , Ácido Peroxinitroso/metabolismo , Ácido Peroxinitroso/farmacología , Especies Reactivas de Oxígeno/metabolismo , Esporas Bacterianas/enzimología , Esporas Bacterianas/fisiología
5.
Biochemistry ; 45(48): 14481-9, 2006 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-17128987

RESUMEN

We have previously shown that redox agents including superoxide anion radical and nitrogen dioxide can react with GXXXXGK(S/T)C motif-containing GTPases (i.e., Rac1, Cdc42, and RhoA) to stimulate guanine nucleotide release. We now show that the reaction of RhoA with redox agents leads to different functional consequences from that of Rac1 and Cdc42 due to the presence of an additional cysteine (GXXXCGK(S/T)C) in the RhoA redox-active motif. While reaction of redox agents with RhoA stimulates guanine nucleotide dissociation, RhoA is subsequently inactivated through formation of an intramolecular disulfide that prevents guanine nucleotide binding thereby causing RhoA inactivation. Thus, redox agents may function to downregulate RhoA activity under conditions that stimulate Rac1 and Cdc42 activity. The opposing functions of these GTPases may be due in part to their differential redox regulation. In addition, the results presented herein suggest that the platinated-chemotherapeutic agent, cisplatin, which is known for targeting nucleic acids, reacts with RhoA to produce a RhoA thiol-cisplatin-thiol adduct, leading to inactivation of RhoA. Similarly, certain arsenic complexes (i.e., arsenate and arsenic trioxide) may inactivate RhoA by bridging the cysteine residues in the GXXXCGK(S/T)C motif. Thus, in addition to redox agents, platinated-chemotherapeutic agents and arsenic complexes may modulate the activity of GTPases containing the GXXXCGK(S/T)C motif (i.e., RhoA and RhoB).


Asunto(s)
Proteína de Unión al GTP rhoA/química , Proteína de Unión al GTP rhoA/metabolismo , Secuencia de Aminoácidos , Catálisis , Cisplatino/farmacología , Nucleótidos de Guanina/metabolismo , Cinética , Espectrometría de Masas , Datos de Secuencia Molecular , Mutación/genética , Óxido Nítrico/química , Óxido Nítrico/metabolismo , Oxidación-Reducción/efectos de los fármacos , Unión Proteica , Proteína de Unión al GTP rhoA/genética
6.
Infect Immun ; 74(4): 2268-76, 2006 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-16552057

RESUMEN

The spore-forming, gram-positive bacterium Bacillus anthracis, the causative agent of anthrax, has achieved notoriety due to its use as a bioterror agent. In the environment, B. anthracis exists as a dormant endospore. Upon infection, germination of endospores occurs during their internalization within the phagocyte, and the ability to survive exposure to antibacterial killing mechanisms, such as O2*-, NO*, and H2O2, is a key initial event in the infective process. Macrophages generate NO* from the oxidative metabolism of L-arginine, using an isoform of nitric oxide synthase (NOS 2). Exposure of murine macrophages (RAW264.7 cells) to B. anthracis endospores up-regulated the expression of NOS 2 12 h after exposure, and production of NO* was comparable to that achieved following other bacterial infections. Spore-killing assays demonstrated a NO*-dependent bactericidal response that was significantly decreased in the presence of the NOS 2 inhibitor L-N6-(1-iminoethyl)lysine and in L-arginine-depleted media. Interestingly, we also found that B. anthracis bacilli and endospores exhibited arginase activity, possibly competing with host NOS 2 for its substrate, L-arginine. As macrophage-generated NO* is an important pathway in microbial killing, the ability of endospores of B. anthracis to regulate production of this free radical has important implications in the control of B. anthracis-mediated infection.


Asunto(s)
Carbunco/enzimología , Carbunco/microbiología , Bacillus anthracis/patogenicidad , Macrófagos/enzimología , Óxido Nítrico Sintasa de Tipo II/fisiología , Animales , Arginasa/metabolismo , Bacillus anthracis/ultraestructura , Línea Celular , Inducción Enzimática/genética , Isoenzimas/biosíntesis , Isoenzimas/genética , Isoenzimas/fisiología , Macrófagos/microbiología , Macrófagos/ultraestructura , Ratones , Óxido Nítrico/biosíntesis , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo II/biosíntesis , Óxido Nítrico Sintasa de Tipo II/genética , Fagocitosis/fisiología , Esporas Bacterianas/fisiología , Especificidad por Sustrato/genética
7.
J Biol Chem ; 279(6): 3933-40, 2004 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-14602725

RESUMEN

Neuronal nitric-oxide synthase (nNOS) is a constitutively expressed enzyme responsible for the production of nitric oxide (NO*) from l-arginine and O2. Nitric oxide is an intra- and intercellular messenger that mediates a diversity of signaling pathways in target cells. In the absence of l-arginine, nNOS has been shown to generate superoxide (O2*). Superoxide, either directly or through its self-dismutation to H2O2, is likewise believed to be a cell-signaling agent. Because nNOS can generate NO* and O2*, we examined the activation of cellular signal transduction pathways in nNOS-transfected cells grown in the presence or absence of l-arginine. Spin trapping/EPR spectroscopy confirmed that stimulated nNOS-transfected cells grown in an l-arginine environment secreted NO* into the surrounding milieu. Production of NO* blocked Ca2+ ionophore-induced activation of the ERK1/2 through a mechanism involving inhibition of the Ras G-protein and Raf-1 kinase. In contrast, ERK activation was largely unaffected in nNOS-transfected cells grown in l-arginine-free media. Inhibition of nNOS-generated NO* with the competitive NOS inhibitor, NG-nitro-l-arginine methyl ester, in cells grown in l-arginine restored ERK1/2 activation to levels similar to that found when nNOS was activated in l-arginine-free media. These findings indicate that nNOS can differentially regulate the ERK signal transduction pathway in a manner dependent on the presence of l-arginine and the production of NO*.


Asunto(s)
Proteína Quinasa 1 Activada por Mitógenos/antagonistas & inhibidores , Proteínas Quinasas Activadas por Mitógenos/antagonistas & inhibidores , Óxido Nítrico Sintasa/metabolismo , Óxido Nítrico/metabolismo , Arginina/farmacología , Línea Celular , Espectroscopía de Resonancia por Spin del Electrón , Inhibidores Enzimáticos/metabolismo , Humanos , Sistema de Señalización de MAP Quinasas , Proteína Quinasa 3 Activada por Mitógenos , Modelos Biológicos , Óxido Nítrico/biosíntesis , Óxido Nítrico Sintasa/genética , Óxido Nítrico Sintasa de Tipo I , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Superóxidos/metabolismo , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA