Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Immunity ; 38(6): 1142-53, 2013 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-23809161

RESUMEN

The NLRP3 inflammasome is an important component of the innate immune system. However, its mechanism of activation remains largely unknown. We show that NLRP3 activators including bacterial pore-forming toxins, nigericin, ATP, and particulate matter caused mitochondrial perturbation or the opening of a large membrane pore, but this was not required for NLRP3 activation. Furthermore, reactive oxygen species generation or a change in cell volume was not necessary for NLRP3 activation. Instead, the only common activity induced by all NLRP3 agonists was the permeation of the cell membrane to K⁺ and Na⁺. Notably, reduction of the intracellular K⁺ concentration was sufficient to activate NLRP3, whereas an increase in intracellular Na⁺ modulated but was not strictly required for inflammasome activation. These results provide a unifying model for the activation of the NLRP3 inflammasome in which a drop in cytosolic K⁺ is the common step that is necessary and sufficient for caspase-1 activation.


Asunto(s)
Proteínas Portadoras/metabolismo , Inflamasomas/metabolismo , Macrófagos/inmunología , Mitocondrias/metabolismo , Adenosina Trifosfato/farmacología , Animales , Proteínas Portadoras/efectos de los fármacos , Proteínas Portadoras/genética , Caspasa 1/metabolismo , Permeabilidad de la Membrana Celular/efectos de los fármacos , Células Cultivadas , Activación Enzimática/efectos de los fármacos , Inmunidad Innata , Inflamasomas/efectos de los fármacos , Macrófagos/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias/efectos de los fármacos , Proteína con Dominio Pirina 3 de la Familia NLR , Nigericina/farmacología , Material Particulado/farmacología , Potasio/metabolismo , Canales de Potasio/efectos de los fármacos , Canales de Potasio/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Canales de Sodio/efectos de los fármacos , Canales de Sodio/metabolismo
2.
Metabolomics ; 17(7): 65, 2021 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-34219205

RESUMEN

OBJECTIVE: Dyslipidemia is a significant risk factor for progression of diabetic kidney disease (DKD). Determining the changes in individual lipids and lipid networks across a spectrum of DKD severity may identify lipids that are pathogenic to DKD progression. METHODS: We performed untargeted lipidomic analysis of kidney cortex tissue from diabetic db/db and db/db eNOS-/- mice along with non-diabetic littermate controls. A subset of mice were treated with the renin-angiotensin system (RAS) inhibitors, lisinopril and losartan, which improves the DKD phenotype in the db/db eNOS-/- mouse model. RESULTS: Of the three independent variables in this study, diabetes had the largest impact on overall lipid levels in the kidney cortex, while eNOS expression and RAS inhibition had smaller impacts on kidney lipid levels. Kidney lipid network architecture, particularly of networks involving glycerolipids such as triacylglycerols, was substantially disrupted by worsening kidney disease in the db/db eNOS-/- mice compared to the db/db mice, a feature that was reversed with RAS inhibition. This was associated with decreased expression of the stearoyl-CoA desaturases, Scd1 and Scd2, with RAS inhibition. CONCLUSIONS: In addition to the known salutary effect of RAS inhibition on DKD progression, our results suggest a previously unrecognized role for RAS inhibition on the kidney triacylglycerol lipid metabolic network.


Asunto(s)
Diabetes Mellitus , Nefropatías Diabéticas , Animales , Antihipertensivos/metabolismo , Diabetes Mellitus/metabolismo , Nefropatías Diabéticas/tratamiento farmacológico , Nefropatías Diabéticas/metabolismo , Riñón/metabolismo , Redes y Vías Metabólicas , Ratones , Sistema Renina-Angiotensina/efectos de los fármacos , Triglicéridos/metabolismo
3.
Anal Bioanal Chem ; 411(3): 777-786, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30470915

RESUMEN

High- and low-density lipoproteins (HDL and LDL) are attractive targets for biomarker discovery. However, ultracentrifugation (UC), the current methodology of choice for isolating HDL and LDL, is tedious, requires large sample volume, results in sample loss, and does not readily provide information on particle size. In this work, human plasma HDL and LDL are separated and collected using semi-preparative asymmetrical flow field-flow fractionation (SP-AF4) and UC. The SP-AF4 and UC separation conditions, sample throughput, and liquid chromatography/mass spectrometry (LC/MS) lipidomic results are compared. Over 600 µg of total proteins is recovered in a single SP-AF4 run, and Western blot results confirm apoA1 pure and apoB100 pure fractions, consistent with HDL and LDL, respectively. The SP-AF4 separation requires ~ 60 min per sample, thus providing a marked improvement over UC which can span hours to days. Lipidome analysis of SP-AF4-prepared HDL and LDL fractions is compared to UC-prepared HDL and LDL samples. Over 270 lipids in positive MS mode and over 140 lipids in negative MS mode are identified by both sample preparation techniques with over 98% overlap between the lipidome. Additionally, lipoprotein size distributions are determined using analytical scale AF4 coupled with multiangle light scattering (MALS) and dynamic light scattering (DLS) detectors. These developments position SP-AF4 as a sample preparation method of choice for lipoprotein biomarker characterization and identification. Graphical abstract ᅟ.


Asunto(s)
Fraccionamiento de Campo-Flujo/métodos , Lipoproteínas HDL/sangre , Lipoproteínas LDL/sangre , Western Blotting , Cromatografía Liquida/métodos , Dispersión Dinámica de Luz/métodos , Humanos , Lipoproteínas HDL/aislamiento & purificación , Lipoproteínas LDL/aislamiento & purificación , Tamaño de la Partícula , Manejo de Especímenes , Espectrometría de Masas en Tándem/métodos , Ultracentrifugación
4.
J Am Soc Nephrol ; 29(1): 295-306, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29021384

RESUMEN

Studies of lipids in CKD, including ESRD, have been limited to measures of conventional lipid profiles. We aimed to systematically identify 17 different lipid classes and associate the abundance thereof with alterations in acylcarnitines, a metric of ß-oxidation, across stages of CKD. From the Clinical Phenotyping Resource and Biobank Core (CPROBE) cohort of 1235 adults, we selected a panel of 214 participants: 36 with stage 1 or 2 CKD, 99 with stage 3 CKD, 61 with stage 4 CKD, and 18 with stage 5 CKD. Among participants, 110 were men (51.4%), 64 were black (29.9%), and 150 were white (70.1%), and the mean (SD) age was 60 (16) years old. We measured plasma lipids and acylcarnitines using liquid chromatography-mass spectrometry. Overall, we identified 330 different lipids across 17 different classes. Compared with earlier stages, stage 5 CKD associated with a higher abundance of saturated C16-C20 free fatty acids (FFAs) and long polyunsaturated complex lipids. Long-chain-to-intermediate-chain acylcarnitine ratio, a marker of efficiency of ß-oxidation, exhibited a graded decrease from stage 2 to 5 CKD (P<0.001). Additionally, multiple linear regression revealed that the long-chain-to-intermediate-chain acylcarnitine ratio inversely associated with polyunsaturated long complex lipid subclasses and the C16-C20 FFAs but directly associated with short complex lipids with fewer double bonds. We conclude that increased abundance of saturated C16-C20 FFAs coupled with impaired ß-oxidation of FFAs and inverse partitioning into complex lipids may be mechanisms underpinning lipid metabolism changes that typify advancing CKD.


Asunto(s)
Carnitina/sangre , Ácidos Grasos/sangre , Fallo Renal Crónico/sangre , Metabolismo de los Lípidos , Oxidación-Reducción , Adulto , Anciano , Anciano de 80 o más Años , Carnitina/análogos & derivados , Carnitina/química , Ácidos Grasos/química , Femenino , Humanos , Masculino , Persona de Mediana Edad , Índice de Severidad de la Enfermedad
5.
J Lipid Res ; 59(2): 173-183, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29237716

RESUMEN

Lipids are ubiquitous metabolites with diverse functions; abnormalities in lipid metabolism appear to be related to complications from multiple diseases, including type 2 diabetes. Through technological advances, the entire lipidome has been characterized and researchers now need computational approaches to better understand lipid network perturbations in different diseases. Using a mouse model of type 2 diabetes with microvascular complications, we examined lipid levels in plasma and in renal, neural, and retinal tissues to identify shared and distinct lipid abnormalities. We used correlation analysis to construct interaction networks in each tissue, to associate changes in lipids with changes in enzymes of lipid metabolism, and to identify overlap of coregulated lipid subclasses between plasma and each tissue to define subclasses of plasma lipids to use as surrogates of tissue lipid metabolism. Lipid metabolism alterations were mostly tissue specific in the kidney, nerve, and retina; no lipid changes correlated between the plasma and all three tissue types. However, alterations in diacylglycerol and in lipids containing arachidonic acid, an inflammatory mediator, were shared among the tissue types, and the highly saturated cholesterol esters were similarly coregulated between plasma and each tissue type in the diabetic mouse. Our results identified several patterns of altered lipid metabolism that may help to identify pathogenic alterations in different tissues and could be used as biomarkers in future research into diabetic microvascular tissue damage.


Asunto(s)
Diabetes Mellitus Experimental/sangre , Diabetes Mellitus Experimental/metabolismo , Modelos Animales de Enfermedad , Metabolismo de los Lípidos , Lípidos/sangre , Animales , Masculino , Ratones
6.
Respir Res ; 19(1): 60, 2018 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-29636049

RESUMEN

BACKGROUND: It is unknown if the plasma lipidome is a useful tool for improving our understanding of the acute respiratory distress syndrome (ARDS). Therefore, we measured the plasma lipidome of individuals with ARDS at two time-points to determine if changes in the plasma lipidome distinguished survivors from non-survivors. We hypothesized that both the absolute concentration and change in concentration over time of plasma lipids are associated with 28-day mortality in this population. METHODS: Samples for this longitudinal observational cohort study were collected at multiple tertiary-care academic medical centers as part of a previous multicenter clinical trial. A mass spectrometry shot-gun lipidomic assay was used to quantify the lipidome in plasma samples from 30 individuals. Samples from two different days were analyzed for each subject. After removing lipids with a coefficient of variation > 30%, differences between cohorts were identified using repeated measures analysis of variance. The false discovery rate was used to adjust for multiple comparisons. Relationships between significant compounds were explored using hierarchical clustering of the Pearson correlation coefficients and the magnitude of these relationships was described using receiver operating characteristic curves. RESULTS: The mass spectrometry assay reliably measured 359 lipids. After adjusting for multiple comparisons, 90 compounds differed between survivors and non-survivors. Survivors had higher levels for each of these lipids except for five membrane lipids. Glycerolipids, particularly those containing polyunsaturated fatty acid side-chains, represented many of the lipids with higher concentrations in survivors. The change in lipid concentration over time did not differ between survivors and non-survivors. CONCLUSIONS: The concentration of multiple plasma lipids is associated with mortality in this group of critically ill patients with ARDS. Absolute lipid levels provided more information than the change in concentration over time. These findings support future research aimed at integrating lipidomics into critical care medicine.


Asunto(s)
Metabolismo de los Lípidos/fisiología , Lípidos/sangre , Metaboloma/fisiología , Síndrome de Dificultad Respiratoria/sangre , Síndrome de Dificultad Respiratoria/mortalidad , Adulto , Anciano , Estudios de Cohortes , Femenino , Humanos , Lípidos/genética , Estudios Longitudinales , Masculino , Persona de Mediana Edad , Mortalidad/tendencias , Estudios Prospectivos , Síndrome de Dificultad Respiratoria/genética
7.
J Proteome Res ; 16(3): 1315-1326, 2017 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-28168879

RESUMEN

Cancer cells use alternate energetic pathways; however, cancer stem cell (CSC) metabolic energetic pathways are unknown. The purpose of this study was to define the metabolic characteristics of head and neck cancer at different points of its pathogenesis with a focus on its CSC compartment. UPLC-MS/MS-profiling and GC-MS-validation studies of human head and neck cancer tissue, saliva, and plasma were used in conjunction with in vitro and in vivo models to carry out this investigation. We identified metabolite biomarker panels that distinguish head and neck cancer from healthy controls, and confirmed involvement of glutamate and glutaminolysis. Glutaminase, which catalyzes glutamate formation from glutamine, and aldehyde dehydrogenase (ALDH), a stemness marker, were highly expressed in primary and metastatic head and neck cancer tissues, tumorspheres, and CSC versus controls. Exogenous glutamine induced stemness via glutaminase, whereas inhibiting glutaminase suppressed stemness in vitro and tumorigenesis in vivo. Head and neck CSC (CD44hi/ALDHhi) exhibited higher glutaminase, glutamate, and sphere levels than CD44lo/ALDHlo cells. Glutaminase drove transcriptional and translational ALDH expression, and glutamine directed even CD44lo/ALDHlo cells toward stemness. Glutaminolysis regulates tumorigenesis and CSC metabolism via ALDH. These findings indicate that glutamate is an important marker of cancer metabolism whose regulation via glutaminase works in concert with ALDH to mediate cancer stemness. Future analyses of glutaminolytic-ALDH driven mechanisms underlying tumorigenic transitions may help in the development of targeted therapies for head and neck cancer and its CSC compartment.


Asunto(s)
Aldehído Deshidrogenasa/metabolismo , Carcinoma de Células Escamosas/metabolismo , Glutamina/metabolismo , Neoplasias de Cabeza y Cuello/metabolismo , Células Madre Neoplásicas/patología , Adulto , Anciano , Anciano de 80 o más Años , Estudios de Casos y Controles , Femenino , Cromatografía de Gases y Espectrometría de Masas , Ácido Glutámico , Glutaminasa , Humanos , Masculino , Persona de Mediana Edad , Células Madre Neoplásicas/metabolismo , Espectrometría de Masas en Tándem
8.
Nature ; 457(7231): 910-4, 2009 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-19212411

RESUMEN

Multiple, complex molecular events characterize cancer development and progression. Deciphering the molecular networks that distinguish organ-confined disease from metastatic disease may lead to the identification of critical biomarkers for cancer invasion and disease aggressiveness. Although gene and protein expression have been extensively profiled in human tumours, little is known about the global metabolomic alterations that characterize neoplastic progression. Using a combination of high-throughput liquid-and-gas-chromatography-based mass spectrometry, we profiled more than 1,126 metabolites across 262 clinical samples related to prostate cancer (42 tissues and 110 each of urine and plasma). These unbiased metabolomic profiles were able to distinguish benign prostate, clinically localized prostate cancer and metastatic disease. Sarcosine, an N-methyl derivative of the amino acid glycine, was identified as a differential metabolite that was highly increased during prostate cancer progression to metastasis and can be detected non-invasively in urine. Sarcosine levels were also increased in invasive prostate cancer cell lines relative to benign prostate epithelial cells. Knockdown of glycine-N-methyl transferase, the enzyme that generates sarcosine from glycine, attenuated prostate cancer invasion. Addition of exogenous sarcosine or knockdown of the enzyme that leads to sarcosine degradation, sarcosine dehydrogenase, induced an invasive phenotype in benign prostate epithelial cells. Androgen receptor and the ERG gene fusion product coordinately regulate components of the sarcosine pathway. Here, by profiling the metabolomic alterations of prostate cancer progression, we reveal sarcosine as a potentially important metabolic intermediary of cancer cell invasion and aggressivity.


Asunto(s)
Progresión de la Enfermedad , Metabolómica , Neoplasias de la Próstata/metabolismo , Sarcosina/metabolismo , Andrógenos/fisiología , Línea Celular , Línea Celular Tumoral , Técnicas de Silenciamiento del Gen , Glicina N-Metiltransferasa/genética , Glicina N-Metiltransferasa/metabolismo , Humanos , Masculino , Neoplasias de la Próstata/enzimología , Neoplasias de la Próstata/genética , Sarcosina/análisis , Sarcosina/orina , Sarcosina-Deshidrogenasa/metabolismo , Transducción de Señal
9.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1869(3): 159451, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38191091

RESUMEN

OBJECTIVE: Individuals with higher intrinsic cardiorespiratory fitness (CRF) experience decreased rates of cardiometabolic disease and mortality, and high CRF is associated with increased utilization of fatty acids (FAs) for energy. Studies suggest a complex relationship between CRF, diet, and sex with health outcomes, but this interaction is understudied. We hypothesized that FA utilization differences by fitness and sex could be detected in the plasma metabolome when rats or humans were fed a high carbohydrate (HC) or high fat (HF) diet. METHODS: Male and female rats selectively bred for low (LCR) and high (HCR) CRF were fed a chow diet or a sucrose-free HF (45 % fat) or HC (10 % fat) diet. Plasma samples were collected at days 0, 3, and 14. Human plasma data was collected from male and female participants who were randomized into a HC or HF diet for 21 days. Samples were analyzed using liquid chromatography-mass spectrometry and regression statistics were used to quantify the effect of diet, CRF, and sex on the lipidome. RESULTS: In rats, the baseline lipidome is more significantly influenced by sex than by CRF, especially as elevated diglycerides, triglycerides, phosphatidylcholines, and lysophosphatidylcholines in males. A dynamic response to diet was observed 3 days after diet, but after 14 days of either diet, the lipidome was modulated by sex with a larger effect size than by diet. Data from the human study also suggests a sex-dependent response to diet with opposite directionality of affect compared to rats, highlighting species-dependent responses to dietary intervention.


Asunto(s)
Capacidad Cardiovascular , Ratas , Humanos , Masculino , Femenino , Animales , Lipidómica , Dieta Alta en Grasa/efectos adversos , Triglicéridos
10.
Nat Commun ; 15(1): 4775, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38839750

RESUMEN

The metal ion transporter SLC39A8 is associated with physiological traits and diseases, including blood manganese (Mn) levels and inflammatory bowel diseases (IBD). The mechanisms by which SLC39A8 controls Mn homeostasis and epithelial integrity remain elusive. Here, we generate Slc39a8 intestinal epithelial cell-specific-knockout (Slc39a8-IEC KO) mice, which display markedly decreased Mn levels in blood and most organs. Radiotracer studies reveal impaired intestinal absorption of dietary Mn in Slc39a8-IEC KO mice. SLC39A8 is localized to the apical membrane and mediates 54Mn uptake in intestinal organoid monolayer cultures. Unbiased transcriptomic analysis identifies alkaline ceramidase 1 (ACER1), a key enzyme in sphingolipid metabolism, as a potential therapeutic target for SLC39A8-associated IBDs. Importantly, treatment with an ACER1 inhibitor attenuates colitis in Slc39a8-IEC KO mice by remedying barrier dysfunction. Our results highlight the essential roles of SLC39A8 in intestinal Mn absorption and epithelial integrity and offer a therapeutic target for IBD associated with impaired Mn homeostasis.


Asunto(s)
Ceramidasa Alcalina , Proteínas de Transporte de Catión , Enfermedades Inflamatorias del Intestino , Mucosa Intestinal , Manganeso , Ratones Noqueados , Animales , Proteínas de Transporte de Catión/metabolismo , Proteínas de Transporte de Catión/genética , Enfermedades Inflamatorias del Intestino/metabolismo , Enfermedades Inflamatorias del Intestino/genética , Enfermedades Inflamatorias del Intestino/patología , Manganeso/metabolismo , Ratones , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología , Ceramidasa Alcalina/metabolismo , Ceramidasa Alcalina/genética , Humanos , Ratones Endogámicos C57BL , Homeostasis , Masculino , Colitis/metabolismo , Colitis/genética , Colitis/patología , Absorción Intestinal , Células Epiteliales/metabolismo
11.
J Proteome Res ; 12(7): 3519-28, 2013 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-23731241

RESUMEN

Effective diagnosis and surveillance of bladder cancer (BCa) is currently challenged by detection methods that are of poor sensitivity, particularly for low-grade tumors, resulting in unnecessary invasive procedures and economic burden. We performed HR-MAS NMR-based global metabolomic profiling and applied unsupervised principal component analysis (PCA) and hierarchical clustering performed on NMR data set of bladder-derived tissues and identified metabolic signatures that differentiate BCa from benign disease. A partial least-squares discriminant analysis (PLS-DA) model (leave-one-out cross-validation) was used as a diagnostic model to distinguish benign and BCa tissues. Receiver operating characteristic curve generated either from PC1 loadings of PCA or from predicted Y-values resulted in an area under curve of 0.97. Relative quantification of more than 15 tissue metabolites derived from HR-MAS NMR showed significant differences (P < 0.001) between benign and BCa samples. Noticeably, striking metabolic signatures were observed even for early stage BCa tissues (Ta-T1), demonstrating the sensitivity in detecting BCa. With the goal of cross-validating metabolic signatures derived from HR-MAS NMR, we utilized the same tissue samples to analyze 8 metabolites through gas chromatography-mass spectrometry (GC-MS)-targeted analysis, which undoubtedly complements HR-MAS NMR-derived metabolomic information. Cross-validation through GC-MS clearly demonstrates the utility of a straightforward, nondestructive, and rapid HR-MAS NMR technique for clinical diagnosis of BCa with even greater sensitivity. In addition to its utility as a diagnostic tool, these studies will lead to a better understanding of aberrant metabolic pathways in cancer as well as the design and implementation of personalized cancer therapy through metabolic modulation.


Asunto(s)
Redes y Vías Metabólicas/genética , Metaboloma , Neoplasias de la Vejiga Urinaria/diagnóstico , Neoplasias de la Vejiga Urinaria/metabolismo , Vejiga Urinaria/patología , Adulto , Anciano , Anciano de 80 o más Años , Cromatografía de Gases , Diagnóstico Diferencial , Metabolismo Energético , Femenino , Humanos , Espectroscopía de Resonancia Magnética , Masculino , Espectrometría de Masas , Persona de Mediana Edad , Estadificación de Neoplasias , Neoplasias , Análisis de Componente Principal , Neoplasias de la Vejiga Urinaria/patología
12.
Anal Chem ; 84(12): 5372-9, 2012 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-22616856

RESUMEN

In an effort to address the variable correspondence problem across large sample cohorts common in metabolomic/metabonomic studies, we have developed a prealignment protocol that aims to generate spectral segments sharing a common target spectrum. Under the assumption that a single reference spectrum will not correctly represent all spectra of a data set, the goal of this approach is to perform local alignment corrections on spectral regions which share a common "most similar" spectrum. A natural beneficial outcome of this procedure is the automatic definition of spectral segments, a feature that is not common to all alignment methods. This protocol is shown to specifically improve the quality of alignment in (1)H NMR data sets exhibiting large intersample compositional variation (e.g., pH, ionic strength). As a proof-of-principle demonstration, we have utilized two recently developed alignment algorithms specific to NMR data, recursive segment-wise peak alignment and interval correlated shifting, and applied them to two data sets composed of 15 aqueous cell line extract and 20 human urine (1)H NMR profiles. Application of this protocol represents a fundamental shift from current alignment methodologies that seek to correct misalignments utilizing a single representative spectrum, with the added benefit that it can be appended to any alignment algorithm.


Asunto(s)
Espectroscopía de Resonancia Magnética/métodos , Estadística como Asunto/métodos , Algoritmos , Línea Celular , Humanos , Almacenamiento y Recuperación de la Información , Metabolómica , Urinálisis , Agua/química
13.
Metabolites ; 12(10)2022 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-36295842

RESUMEN

The effect of glycemic stress on de novo lipogenesis (DNL) in podocytes and tubular epithelial cells is understudied. This study is aimed (A) to show the effect of glycemic stress on DNL, and (B) to assess the effect of acetyl-Co A (ACC) inhibition on halting upregulation of DNL, on the expression of other lipid regulatory genes in the DNL pathway, and on markers of fibrosis and apoptosis in podocytes and tubular epithelial cells. We used cultured mouse primary tubular epithelial cells, mouse proximal tubular (BUMPT) cells, and immortal mouse podocytes and measured their percentage of labeled 13C2-palmitate as a marker of DNL after incubation with 13C2 acetate in response to high glucose concentration (25 mM). We then tested the effect of ACC inhibition by complimentary strategies utilizing CRISPR/cas9 deletion or incubation with Acaca and Acacb GapmeRs or using a small molecule inhibitor on DNL under hyperglycemic concentration. Exposure to high glucose concentration (25 mM) compared to osmotic controlled low glucose concentration (5.5 mM) significantly increased labeled palmitate after 24 h up to 72 h in podocytes and primary tubular cells. Knocking out of the ACC coding Acaca and Acacb genes by CRISPR/cas9, downregulation of Acaca and Acacb by specific antisense LNA GapmeRs and inhibition of ACC by firsocostat similarly halted/mitigated upregulation of DNL and decreased markers of fibrosis and programmed cell death in podocytes and various tubular cells. ACC inhibition is a potential therapeutic target to mitigate or halt hyperglycemia-induced upregulation of DNL in podocytes and tubular cells.

14.
Ann Clin Transl Neurol ; 9(9): 1392-1404, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35923113

RESUMEN

OBJECTIVE: The serum lipidomic profile associated with neuropathy in type 2 diabetes is not well understood. Obesity and dyslipidemia are known neuropathy risk factors, suggesting lipid profiles early during type 2 diabetes may identify individuals who develop neuropathy later in the disease course. This retrospective cohort study examined lipidomic profiles 10 years prior to type 2 diabetic neuropathy assessment. METHODS: Participants comprised members of the Gila River Indian community with type 2 diabetes (n = 69) with available stored serum samples and neuropathy assessment 10 years later using the combined Michigan Neuropathy Screening Instrument (MNSI) examination and questionnaire scores. A combined MNSI index was calculated from examination and questionnaire scores. Serum lipids (435 species from 18 classes) were quantified by mass spectrometry. RESULTS: The cohort included 17 males and 52 females with a mean age of 45 years (SD = 9 years). Participants were stratified as with (high MNSI index score > 2.5407) versus without neuropathy (low MNSI index score ≤ 2.5407). Significantly decreased medium-chain acylcarnitines and increased total free fatty acids, independent of chain length and saturation, in serum at baseline associated with incident peripheral neuropathy at follow-up, that is, participants had high MNSI index scores, independent of covariates. Participants with neuropathy also had decreased phosphatidylcholines and increased lysophosphatidylcholines at baseline, independent of chain length and saturation. The abundance of other lipid classes did not differ significantly by neuropathy status. INTERPRETATION: Abundance differences in circulating acylcarnitines, free fatty acids, phosphatidylcholines, and lysophosphatidylcholines 10 years prior to neuropathy assessment are associated with neuropathy status in type 2 diabetes.


Asunto(s)
Diabetes Mellitus Tipo 2 , Neuropatías Diabéticas , Diabetes Mellitus Tipo 2/complicaciones , Neuropatías Diabéticas/etiología , Ácidos Grasos no Esterificados , Femenino , Humanos , Lipidómica , Lisofosfatidilcolinas , Masculino , Persona de Mediana Edad , Fosfatidilcolinas , Estudios Retrospectivos
15.
J Proteome Res ; 10(11): 5232-41, 2011 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-21961579

RESUMEN

High-resolution magic-angle spinning (HR-MAS) proton NMR spectroscopy is used to explore the metabolic signatures of head and neck squamous cell carcinoma (HNSCC) which included matched normal adjacent tissue (NAT) and tumor originating from tongue, lip, larynx and oral cavity, and associated lymph-node metastatic (LN-Met) tissues. A total of 43 tissues (18 NAT, 18 Tumor and 7 LN-Met) from 22 HNSCC patients were analyzed. Principal Component Analysis of NMR data showed a clear classification between NAT and tumor tissues, however, LN-Met tissues were classified among tumor. A partial least-squares discriminant analysis model generated from NMR metabolic profiles was used to differentiate normal from tumor samples (Q(2) > 0.80, Receiver Operator Characteristic area under the curve >0.86, using 7-fold cross validation). HNSCC and LN-Met tissues showed elevated levels of lactate, amino acids including leucine, isoleucine, valine, alanine, glutamine, glutamate, aspartate, glycine, phenylalanine and tyrosine, choline containing compounds, creatine, taurine, glutathione, and decreased levels of triglycerides. These elevated metabolites were associated with highly active glycolysis, increased amino acids influx (anaplerosis) into the TCA cycle, altered energy metabolism, membrane choline phospholipid metabolism, and oxidative and osmotic defense mechanisms. Moreover, decreased levels of triglycerides may indicate lipolysis followed by ß-oxidation of fatty acids that may exist to deliver bioenergy for rapid tumor cell proliferation and growth.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Carcinoma de Células Escamosas/metabolismo , Neoplasias de Cabeza y Cuello/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Aminoácidos/metabolismo , Área Bajo la Curva , Carcinoma de Células Escamosas/diagnóstico , Carcinoma de Células Escamosas/patología , Femenino , Glucólisis , Neoplasias de Cabeza y Cuello/diagnóstico , Neoplasias de Cabeza y Cuello/patología , Humanos , Metabolismo de los Lípidos , Espectroscopía de Resonancia Magnética , Masculino , Persona de Mediana Edad , Análisis Multivariante , Pronóstico , Curva ROC
16.
Clin Kidney J ; 14(4): 1097-1105, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34094518

RESUMEN

BACKGROUND: Non-traditional risk factors like inflammation and oxidative stress play an essential role in the increased cardiovascular disease (CVD) risk prevalent in chronic kidney disease (CKD). Tryptophan catabolism by the kynurenine pathway (KP) is linked to systemic inflammation and CVD in the general and dialysis population. However, the relationship of KP to incident CVD in the CKD population is unknown. METHODS: We measured tryptophan metabolites using targeted mass spectrometry in 92 patients with a history of CVD (old CVD); 46 patients with no history of CVD and new CVD during follow-up (no CVD); and 46 patients with no CVD history who developed CVD in the median follow-up period of 2 years (incident CVD). RESULTS: The three groups are well-matched in age, gender, race, diabetes status and CKD stage, and only differed in total cholesterol and proteinuria. Tryptophan and kynurenine levels significantly decreased in patients with 'Incident CVD' compared with the no CVD or old CVD groups (P = 5.2E-7; P = 0.003 respectively). Kynurenic acid, 3-hydroxykynurenine and kynurenine are all increased with worsening CKD stage (P < 0.05). An increase in tryptophan levels at baseline was associated with 0.32-fold lower odds of incident CVD (P = 0.000014) compared with the no CVD group even after adjustment for classic CVD risk factors. Addition of tryptophan and kynurenine levels to the receiver operating curve constructed from discriminant analysis predicting incident CVD using baseline clinical variables increased the area under the curve from 0.76 to 0.82 (P = 0.04). CONCLUSIONS: In summary, our study demonstrates that low tryptophan levels are associated with incident CVD in CKD.

17.
Metabolites ; 12(1)2021 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-35050130

RESUMEN

African-American (AA) men are more than twice as likely to die of prostate cancer (PCa) than European American (EA) men. Previous in silico analysis revealed enrichment of altered lipid metabolic pathways in pan-cancer AA tumors. Here, we performed global unbiased lipidomics profiling on 48 matched localized PCa and benign adjacent tissues (30 AA, 24 ancestry-verified, and 18 EA, 8 ancestry verified) and quantified 429 lipids belonging to 14 lipid classes. Significant alterations in long chain polyunsaturated lipids were observed between PCa and benign adjacent tissues, low and high Gleason tumors, as well as associated with early biochemical recurrence, both in the entire cohort, and within AA patients. Alterations in cholesteryl esters, and phosphatidyl inositol classes of lipids delineated AA and EA PCa, while the levels of lipids belonging to triglycerides, phosphatidyl glycerol, phosphatidyl choline, phosphatidic acid, and cholesteryl esters distinguished AA and EA PCa patients with biochemical recurrence. These first-in-field results implicate lipid alterations as biological factors for prostate cancer disparities.

18.
JCI Insight ; 6(19)2021 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-34437304

RESUMEN

BACKGROUNDThis study systematically investigated circulating and retinal tissue lipid determinants of human diabetic retinopathy (DR) to identify underlying lipid alterations associated with severity of DR.METHODSRetinal tissues were retrieved from postmortem human eyes, including 19 individuals without diabetes, 20 with diabetes but without DR, and 20 with diabetes and DR, for lipidomic study. In a parallel study, serum samples from 28 American Indians with type 2 diabetes from the Gila River Indian Community, including 12 without DR, 7 with mild nonproliferative DR (NPDR), and 9 with moderate NPDR, were selected. A mass-spectrometry-based lipidomic platform was used to measure serum and tissue lipids.RESULTSIn the postmortem retinas, we found a graded decrease of long-chain acylcarnitines and longer-chain fatty acid ester of hydroxyl fatty acids, diacylglycerols, triacylglycerols, phosphatidylcholines, and ceramide(NS) in central retina from individuals with no diabetes to those with diabetes with DR. The American Indians' sera also exhibited a graded decrease in circulating long-chain acylcarnitines and a graded increase in the intermediate-length saturated and monounsaturated triacylglycerols from no DR to moderate NPDR.CONCLUSIONThese findings suggest diminished synthesis of complex lipids and impaired mitochondrial ß-oxidation of fatty acids in retinal DR, with parallel changes in circulating lipids.TRIAL REGISTRATIONClinicalTrials.gov NCT00340678.FUNDINGThis work was supported by NIH grants R24 DK082841, K08DK106523, R03DK121941, P30DK089503, P30DK081943, P30DK020572, P30 EY007003; The Thomas Beatson Foundation; and JDRF Center for Excellence (5-COE-2019-861-S-B).


Asunto(s)
Diabetes Mellitus Tipo 2/metabolismo , Retinopatía Diabética/metabolismo , Lipidómica , Retina/metabolismo , Adulto , Negro o Afroamericano , Anciano , Arizona , Carnitina/análogos & derivados , Carnitina/metabolismo , Estudios de Casos y Controles , Ceramidas/metabolismo , Diabetes Mellitus Tipo 2/complicaciones , Retinopatía Diabética/etiología , Diglicéridos/metabolismo , Progresión de la Enfermedad , Ésteres/metabolismo , Femenino , Hispánicos o Latinos , Humanos , Masculino , Espectrometría de Masas , Persona de Mediana Edad , Mitocondrias/metabolismo , Fosfatidilcolinas/metabolismo , Triglicéridos/metabolismo , Población Blanca , Indio Americano o Nativo de Alaska
19.
Diabetes Care ; 44(9): 2098-2106, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34244329

RESUMEN

OBJECTIVES: Patients with type 1 diabetes (T1D) exhibit modest lipid abnormalities as measured by traditional metrics. This study aimed to identify lipidomic predictors of rapid decline of kidney function in T1D. RESEARCH DESIGN AND METHODS: In a case-control study, 817 patients with T1D from three large cohorts were randomly split into training and validation subsets. Case was defined as >3 mL/min/1.73 m2 per year decline in estimated glomerular filtration rate (eGFR), while control was defined as <1 mL/min/1.73 m2 per year decline over a minimum 4-year follow-up. Lipids were quantified in baseline serum samples using a targeted mass spectrometry lipidomic platform. RESULTS: At individual lipids, free fatty acid (FFA)20:2 was directly and phosphatidylcholine (PC)16:0/22:6 was inversely and independently associated with rapid eGFR decline. When examined by lipid class, rapid eGFR decline was characterized by higher abundance of unsaturated FFAs, phosphatidylethanolamine (PE)-Ps, and PCs with an unsaturated acyl chain at the sn1 carbon, and by lower abundance of saturated FFAs, longer triacylglycerols, and PCs, PEs, PE-Ps, and PE-Os with an unsaturated acyl chain at the sn1 carbon at eGFR ≥90 mL/min/1.73 m2. A multilipid panel consisting of unsaturated FFAs and saturated PE-Ps predicted rapid eGFR decline better than individual lipids (C-statistic, 0.71) and improved the C-statistic of the clinical model from 0.816 to 0.841 (P = 0.039). Observations were confirmed in the validation subset. CONCLUSIONS: Distinct from previously reported predictors of GFR decline in type 2 diabetes, these findings suggest differential incorporation of FFAs at the sn1 carbon of the phospholipids' glycerol backbone as an independent predictor of rapid GFR decline in T1D.


Asunto(s)
Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Insuficiencia Renal Crónica , Estudios de Casos y Controles , Progresión de la Enfermedad , Ácidos Grasos no Esterificados , Tasa de Filtración Glomerular , Humanos , Riñón , Fosfolípidos , Factores de Riesgo
20.
J Transl Sci ; 6(6)2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33240530

RESUMEN

RATIONALE AND OBJECTIVE: Despite contribution of dyslipidemia to ischemic stroke, plasma lipidomic correlates of stroke in CKD is not studied. This study is aimed to identify plasma lipid alterations associated with stroke. STUDY DESIGN: Cross sectional. SETTING AND POPULATION: 214 participants of Clinical Phenotyping and Resource Biobank Core (CPROBE). Clinical data and plasma samples at the time of recruitment were obtained and used to generate lipidomic data by liquid chromatography/mass-spectrometry-based untargeted platform. PREDICTORS: Various levels of free fatty acids, acylcarnitines and complex lipids. OUTCOME: Stroke. ANALYTIC APPROACH: includes compound by compound comparison of lipids using t-test adjusted by false discovery rate in patients with and without stroke, and application of logistic regression analysis to identify independent lipid predictors of stroke and to estimate the odds associated with their various levels. RESULTS: Overall, we identified 330 compounds. Enrichment analysis revealed overrepresentation of differentially regulated phosphatidylcholines (PC)s and phosphatidylethanolamines (PE)s were overrepresented in stroke (P<0.001). Abundance of PC38:4, PE36:4, PC34:0, and palmitate were significantly higher, but those of plasmenyl-PE (pPE)38:2, and PE 32:2 was significantly lower in patients with stroke (p≤0.0014). After adjusting, each 1-SD increase in palmitate and PC38:4 was independently associated with 1.84 fold (95% CI: 1.06-3.20, p=0.031) and 1.84 fold (1.11-3.05, p=0.018) higher risk of stroke, respectively. We observed a significant trend toward higher abundance of PCs, PEs, pPEs, and sphingomyelins in stroke (p≤0.046). LIMITATIONS: Small sample size; unclear, if similar changes in the same or opposite direction preceded stroke, as the cross-sectional nature of the observation does not allow determining the effect of time course on lipid alterations. CONCLUSION: Differential regulation of palmitate, PCs, and PEs in patients with CKD and a history of stroke may represent a previously unrecognized risk factor and might be a target of risk stratification and modification.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA