Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 120
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Mod Pathol ; 37(3): 100416, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38154653

RESUMEN

In recent years, artificial intelligence (AI) has demonstrated exceptional performance in mitosis identification and quantification. However, the implementation of AI in clinical practice needs to be evaluated against the existing methods. This study is aimed at assessing the optimal method of using AI-based mitotic figure scoring in breast cancer (BC). We utilized whole slide images from a large cohort of BC with extended follow-up comprising a discovery (n = 1715) and a validation (n = 859) set (Nottingham cohort). The Cancer Genome Atlas of breast invasive carcinoma (TCGA-BRCA) cohort (n = 757) was used as an external test set. Employing automated mitosis detection, the mitotic count was assessed using 3 different methods, the mitotic count per tumor area (MCT; calculated by dividing the number of mitotic figures by the total tumor area), the mitotic index (MI; defined as the average number of mitotic figures per 1000 malignant cells), and the mitotic activity index (MAI; defined as the number of mitotic figures in 3 mm2 area within the mitotic hotspot). These automated metrics were evaluated and compared based on their correlation with the well-established visual scoring method of the Nottingham grading system and Ki67 score, clinicopathologic parameters, and patient outcomes. AI-based mitotic scores derived from the 3 methods (MCT, MI, and MAI) were significantly correlated with the clinicopathologic characteristics and patient survival (P < .001). However, the mitotic counts and the derived cutoffs varied significantly between the 3 methods. Only MAI and MCT were positively correlated with the gold standard visual scoring method used in Nottingham grading system (r = 0.8 and r = 0.7, respectively) and Ki67 scores (r = 0.69 and r = 0.55, respectively), and MAI was the only independent predictor of survival (P < .05) in multivariate Cox regression analysis. For clinical applications, the optimum method of scoring mitosis using AI needs to be considered. MAI can provide reliable and reproducible results and can accurately quantify mitotic figures in BC.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/patología , Antígeno Ki-67 , Inteligencia Artificial , Mitosis , Índice Mitótico
2.
Histopathology ; 84(5): 847-862, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38233108

RESUMEN

AIMS: To conduct a definitive multicentre comparison of digital pathology (DP) with light microscopy (LM) for reporting histopathology slides including breast and bowel cancer screening samples. METHODS: A total of 2024 cases (608 breast, 607 GI, 609 skin, 200 renal) were studied, including 207 breast and 250 bowel cancer screening samples. Cases were examined by four pathologists (16 study pathologists across the four speciality groups), using both LM and DP, with the order randomly assigned and 6 weeks between viewings. Reports were compared for clinical management concordance (CMC), meaning identical diagnoses plus differences which do not affect patient management. Percentage CMCs were computed using logistic regression models with crossed random-effects terms for case and pathologist. The obtained percentage CMCs were referenced to 98.3% calculated from previous studies. RESULTS: For all cases LM versus DP comparisons showed the CMC rates were 99.95% [95% confidence interval (CI) = 99.90-99.97] and 98.96 (95% CI = 98.42-99.32) for cancer screening samples. In speciality groups CMC for LM versus DP showed: breast 99.40% (99.06-99.62) overall and 96.27% (94.63-97.43) for cancer screening samples; [gastrointestinal (GI) = 99.96% (99.89-99.99)] overall and 99.93% (99.68-99.98) for bowel cancer screening samples; skin 99.99% (99.92-100.0); renal 99.99% (99.57-100.0). Analysis of clinically significant differences revealed discrepancies in areas where interobserver variability is known to be high, in reads performed with both modalities and without apparent trends to either. CONCLUSIONS: Comparing LM and DP CMC, overall rates exceed the reference 98.3%, providing compelling evidence that pathologists provide equivalent results for both routine and cancer screening samples irrespective of the modality used.


Asunto(s)
Neoplasias de la Mama , Neoplasias Colorrectales , Patología Clínica , Humanos , Detección Precoz del Cáncer , Interpretación de Imagen Asistida por Computador/métodos , Microscopía/métodos , Patología Clínica/métodos , Femenino , Estudios Multicéntricos como Asunto
3.
J Pathol ; 260(5): 564-577, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37550878

RESUMEN

Computational pathology is currently witnessing a surge in the development of AI techniques, offering promise for achieving breakthroughs and significantly impacting the practices of pathology and oncology. These AI methods bring with them the potential to revolutionize diagnostic pipelines as well as treatment planning and overall patient care. Numerous peer-reviewed studies reporting remarkable performance across diverse tasks serve as a testimony to the potential of AI in the field. However, widespread adoption of these methods in clinical and pre-clinical settings still remains a challenge. In this review article, we present a detailed analysis of the major obstacles encountered during the development of effective models and their deployment in practice. We aim to provide readers with an overview of the latest developments, assist them with insights into identifying some specific challenges that may require resolution, and suggest recommendations and potential future research directions. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Asunto(s)
Inteligencia Artificial , Humanos , Reino Unido
4.
J Pathol ; 260(1): 32-42, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36705810

RESUMEN

Triple-negative breast cancer (TNBC) is known to have a relatively poor outcome with variable prognoses, raising the need for more informative risk stratification. We investigated a set of digital, artificial intelligence (AI)-based spatial tumour microenvironment (sTME) features and explored their prognostic value in TNBC. After performing tissue classification on digitised haematoxylin and eosin (H&E) slides of TNBC cases, we employed a deep learning-based algorithm to segment tissue regions into tumour, stroma, and lymphocytes in order to compute quantitative features concerning the spatial relationship of tumour with lymphocytes and stroma. The prognostic value of the digital features was explored using survival analysis with Cox proportional hazard models in a cross-validation setting on two independent international multi-centric TNBC cohorts: The Australian Breast Cancer Tissue Bank (AUBC) cohort (n = 318) and The Cancer Genome Atlas Breast Cancer (TCGA) cohort (n = 111). The proposed digital stromal tumour-infiltrating lymphocytes (Digi-sTILs) score and the digital tumour-associated stroma (Digi-TAS) score were found to carry strong prognostic value for disease-specific survival, with the Digi-sTILs and Digi-TAS scores giving C-index values of 0.65 (p = 0.0189) and 0.60 (p = 0.0437), respectively, on the TCGA cohort as a validation set. Combining the Digi-sTILs feature with the patient's positivity status for axillary lymph nodes yielded a C-index of 0.76 on unseen validation cohorts. We surmise that the proposed digital features could potentially be used for better risk stratification and management of TNBC patients. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Humanos , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/patología , Linfocitos Infiltrantes de Tumor/patología , Inteligencia Artificial , Australia , Pronóstico , Microambiente Tumoral
5.
J Pathol ; 260(4): 431-442, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37294162

RESUMEN

Oral squamous cell carcinoma (OSCC) is amongst the most common cancers, with more than 377,000 new cases worldwide each year. OSCC prognosis remains poor, related to cancer presentation at a late stage, indicating the need for early detection to improve patient prognosis. OSCC is often preceded by a premalignant state known as oral epithelial dysplasia (OED), which is diagnosed and graded using subjective histological criteria leading to variability and prognostic unreliability. In this work, we propose a deep learning approach for the development of prognostic models for malignant transformation and their association with clinical outcomes in histology whole slide images (WSIs) of OED tissue sections. We train a weakly supervised method on OED cases (n = 137) with malignant transformation (n = 50) and mean malignant transformation time of 6.51 years (±5.35 SD). Stratified five-fold cross-validation achieved an average area under the receiver-operator characteristic curve (AUROC) of 0.78 for predicting malignant transformation in OED. Hotspot analysis revealed various features of nuclei in the epithelium and peri-epithelial tissue to be significant prognostic factors for malignant transformation, including the count of peri-epithelial lymphocytes (PELs) (p < 0.05), epithelial layer nuclei count (NC) (p < 0.05), and basal layer NC (p < 0.05). Progression-free survival (PFS) using the epithelial layer NC (p < 0.05, C-index = 0.73), basal layer NC (p < 0.05, C-index = 0.70), and PELs count (p < 0.05, C-index = 0.73) all showed association of these features with a high risk of malignant transformation in our univariate analysis. Our work shows the application of deep learning for the prognostication and prediction of PFS of OED for the first time and offers potential to aid patient management. Further evaluation and testing on multi-centre data is required for validation and translation to clinical practice. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de Cabeza y Cuello , Neoplasias de la Boca , Lesiones Precancerosas , Humanos , Carcinoma de Células Escamosas/patología , Neoplasias de la Boca/patología , Biomarcadores de Tumor/análisis , Hiperplasia/patología , Lesiones Precancerosas/patología , Carcinoma de Células Escamosas de Cabeza y Cuello/patología , Linfocitos/patología , Neoplasias de Cabeza y Cuello/patología
6.
Gut ; 72(9): 1709-1721, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37173125

RESUMEN

OBJECTIVE: To develop an interpretable artificial intelligence algorithm to rule out normal large bowel endoscopic biopsies, saving pathologist resources and helping with early diagnosis. DESIGN: A graph neural network was developed incorporating pathologist domain knowledge to classify 6591 whole-slides images (WSIs) of endoscopic large bowel biopsies from 3291 patients (approximately 54% female, 46% male) as normal or abnormal (non-neoplastic and neoplastic) using clinically driven interpretable features. One UK National Health Service (NHS) site was used for model training and internal validation. External validation was conducted on data from two other NHS sites and one Portuguese site. RESULTS: Model training and internal validation were performed on 5054 WSIs of 2080 patients resulting in an area under the curve-receiver operating characteristic (AUC-ROC) of 0.98 (SD=0.004) and AUC-precision-recall (PR) of 0.98 (SD=0.003). The performance of the model, named Interpretable Gland-Graphs using a Neural Aggregator (IGUANA), was consistent in testing over 1537 WSIs of 1211 patients from three independent external datasets with mean AUC-ROC=0.97 (SD=0.007) and AUC-PR=0.97 (SD=0.005). At a high sensitivity threshold of 99%, the proposed model can reduce the number of normal slides to be reviewed by a pathologist by approximately 55%. IGUANA also provides an explainable output highlighting potential abnormalities in a WSI in the form of a heatmap as well as numerical values associating the model prediction with various histological features. CONCLUSION: The model achieved consistently high accuracy showing its potential in optimising increasingly scarce pathologist resources. Explainable predictions can guide pathologists in their diagnostic decision-making and help boost their confidence in the algorithm, paving the way for its future clinical adoption.


Asunto(s)
Inteligencia Artificial , Medicina Estatal , Humanos , Masculino , Femenino , Estudios Retrospectivos , Algoritmos , Biopsia
7.
Br J Cancer ; 128(1): 3-11, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36183010

RESUMEN

Immunotherapy deals with therapeutic interventions to arrest the progression of tumours using the immune system. These include checkpoint inhibitors, T-cell manipulation, cytokines, oncolytic viruses and tumour vaccines. In this paper, we present a survey of the latest developments on immunotherapy in colorectal cancer (CRC) and the role of artificial intelligence (AI) in this context. Among these, microsatellite instability (MSI) is perhaps the most popular IO biomarker globally. We first discuss the MSI status of tumours, its implications for patient management, and its relationship to immune response. In recent years, several aspiring studies have used AI to predict the MSI status of patients from digital whole-slide images (WSIs) of routine diagnostic slides. We present a survey of AI literature on the prediction of MSI and tumour mutation burden from digitised WSIs of haematoxylin and eosin-stained diagnostic slides. We discuss AI approaches in detail and elaborate their contributions, limitations and key takeaways to drive future research. We further expand this survey to other IO-related biomarkers like immune cell infiltrates and alternate data modalities like immunohistochemistry and gene expression. Finally, we underline possible future directions in immunotherapy for CRC and promise of AI to accelerate this exploration for patient benefits.


Asunto(s)
Neoplasias Colorrectales , Humanos , Neoplasias Colorrectales/terapia , Neoplasias Colorrectales/tratamiento farmacológico , Inteligencia Artificial , Inestabilidad de Microsatélites , Oncología Médica
8.
Br J Cancer ; 129(10): 1599-1607, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37758836

RESUMEN

BACKGROUND: Oral epithelial dysplasia (OED) is the precursor to oral squamous cell carcinoma which is amongst the top ten cancers worldwide. Prognostic significance of conventional histological features in OED is not well established. Many additional histological abnormalities are seen in OED, but are insufficiently investigated, and have not been correlated to clinical outcomes. METHODS: A digital quantitative analysis of epithelial cellularity, nuclear geometry, cytoplasm staining intensity and epithelial architecture/thickness is conducted on 75 OED whole-slide images (252 regions of interest) with feature-specific comparisons between grades and against non-dysplastic/control cases. Multivariable models were developed to evaluate prediction of OED recurrence and malignant transformation. The best performing models were externally validated on unseen cases pooled from four different centres (n = 121), of which 32% progressed to cancer, with an average transformation time of 45 months. RESULTS: Grade-based differences were seen for cytoplasmic eosin, nuclear eccentricity, and circularity in basal epithelial cells of OED (p < 0.05). Nucleus circularity was associated with OED recurrence (p = 0.018) and epithelial perimeter associated with malignant transformation (p = 0.03). The developed model demonstrated superior predictive potential for malignant transformation (AUROC 0.77) and OED recurrence (AUROC 0.74) as compared with conventional WHO grading (AUROC 0.68 and 0.71, respectively). External validation supported the prognostic strength of this model. CONCLUSIONS: This study supports a novel prognostic model which outperforms existing grading systems. Further studies are warranted to evaluate its significance for OED prognostication.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de la Boca , Lesiones Precancerosas , Humanos , Neoplasias de la Boca/patología , Lesiones Precancerosas/patología , Carcinoma de Células Escamosas/patología , Mucosa Bucal/patología , Pronóstico , Transformación Celular Neoplásica/patología
9.
Br J Cancer ; 129(11): 1747-1758, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37777578

RESUMEN

BACKGROUND: Tumour infiltrating lymphocytes (TILs) are a prognostic parameter in triple-negative and human epidermal growth factor receptor 2 (HER2)-positive breast cancer (BC). However, their role in luminal (oestrogen receptor positive and HER2 negative (ER + /HER2-)) BC remains unclear. In this study, we used artificial intelligence (AI) to assess the prognostic significance of TILs in a large well-characterised cohort of luminal BC. METHODS: Supervised deep learning model analysis of Haematoxylin and Eosin (H&E)-stained whole slide images (WSI) was applied to a cohort of 2231 luminal early-stage BC patients with long-term follow-up. Stromal TILs (sTILs) and intratumoural TILs (tTILs) were quantified and their spatial distribution within tumour tissue, as well as the proportion of stroma involved by sTILs were assessed. The association of TILs with clinicopathological parameters and patient outcome was determined. RESULTS: A strong positive linear correlation was observed between sTILs and tTILs. High sTILs and tTILs counts, as well as their proximity to stromal and tumour cells (co-occurrence) were associated with poor clinical outcomes and unfavourable clinicopathological parameters including high tumour grade, lymph node metastasis, large tumour size, and young age. AI-based assessment of the proportion of stroma composed of sTILs (as assessed visually in routine practice) was not predictive of patient outcome. tTILs was an independent predictor of worse patient outcome in multivariate Cox Regression analysis. CONCLUSION: AI-based detection of TILs counts, and their spatial distribution provides prognostic value in luminal early-stage BC patients. The utilisation of AI algorithms could provide a comprehensive assessment of TILs as a morphological variable in WSIs beyond eyeballing assessment.


Asunto(s)
Neoplasias de la Mama , Neoplasias de la Mama Triple Negativas , Humanos , Femenino , Neoplasias de la Mama/patología , Linfocitos Infiltrantes de Tumor/patología , Inteligencia Artificial , Pronóstico , Neoplasias de la Mama Triple Negativas/patología , Biomarcadores de Tumor/metabolismo
10.
Mod Pathol ; 36(12): 100320, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37652399

RESUMEN

The etiology of head and neck squamous cell carcinoma (HNSCC) involves multiple carcinogens, such as alcohol, tobacco, and infection with human papillomavirus (HPV). Because HPV infection influences the prognosis, treatment, and survival of patients with HNSCC, it is important to determine the HPV status of these tumors. In this article, we propose a novel deep learning pipeline for HPV infection status prediction with state-of-the-art performance in HPV detection using only whole-slide images of routine hematoxylin and eosin-stained HNSCC sections. We show that our Digital-HPV score generated from hematoxylin and eosin slides produces statistically significant patient stratifications in terms of overall and disease-specific survival. In addition, quantitative profiling of the spatial tumor microenvironment and analysis of the immune profiles show relatively high levels of lymphocytic infiltration in tumor and tumor-associated stroma. High levels of B cells and T cells and low macrophage levels were also identified in HPV-positive patients compared to HPV-negative patients, confirming different immune response patterns elicited by HPV infection in patients with HNSCC.


Asunto(s)
Carcinoma de Células Escamosas , Aprendizaje Profundo , Neoplasias de Cabeza y Cuello , Infecciones por Papillomavirus , Humanos , Carcinoma de Células Escamosas de Cabeza y Cuello , Carcinoma de Células Escamosas/patología , Eosina Amarillenta-(YS) , Hematoxilina , Papillomaviridae , Microambiente Tumoral
11.
Mod Pathol ; 36(10): 100254, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37380057

RESUMEN

Tumor-associated stroma in breast cancer (BC) is complex and exhibits a high degree of heterogeneity. To date, no standardized assessment method has been established. Artificial intelligence (AI) could provide an objective morphologic assessment of tumors and stroma, with the potential to identify new features not discernible by visual microscopy. In this study, we used AI to assess the clinical significance of (1) stroma-to-tumor ratio (S:TR) and (2) the spatial arrangement of stromal cells, tumor cell density, and tumor burden in BC. Whole-slide images of a large cohort (n = 1968) of well-characterized luminal BC cases were examined. Region and cell-level annotation was performed, and supervised deep learning models were applied for automated quantification of tumor and stromal features. S:TR was calculated in terms of surface area and cell count ratio, and the S:TR heterogeneity and spatial distribution were also assessed. Tumor cell density and tumor size were used to estimate tumor burden. Cases were divided into discovery (n = 1027) and test (n = 941) sets for validation of the findings. In the whole cohort, the stroma-to-tumor mean surface area ratio was 0.74, and stromal cell density heterogeneity score was high (0.7/1). BC with high S:TR showed features characteristic of good prognosis and longer patient survival in both the discovery and test sets. Heterogeneous spatial distribution of S:TR areas was predictive of worse outcome. Higher tumor burden was associated with aggressive tumor behavior and shorter survival and was an independent predictor of worse outcome (BC-specific survival; hazard ratio: 1.7, P = .03, 95% CI, 1.04-2.83 and distant metastasis-free survival; hazard ratio: 1.64, P = .04, 95% CI, 1.01-2.62) superior to absolute tumor size. The study concludes that AI provides a tool to assess major and subtle morphologic stromal features in BC with prognostic implications. Tumor burden is more prognostically informative than tumor size.

12.
Bioinformatics ; 38(12): 3312-3314, 2022 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-35532083

RESUMEN

MOTIVATION: Digitization of pathology laboratories through digital slide scanners and advances in deep learning approaches for objective histological assessment have resulted in rapid progress in the field of computational pathology (CPath) with wide-ranging applications in medical and pharmaceutical research as well as clinical workflows. However, the estimation of robustness of CPath models to variations in input images is an open problem with a significant impact on the downstream practical applicability, deployment and acceptability of these approaches. Furthermore, development of domain-specific strategies for enhancement of robustness of such models is of prime importance as well. RESULTS: In this work, we propose the first domain-specific Robustness Evaluation and Enhancement Toolbox (REET) for computational pathology applications. It provides a suite of algorithmic strategies for enabling robustness assessment of predictive models with respect to specialized image transformations such as staining, compression, focusing, blurring, changes in spatial resolution, brightness variations, geometric changes as well as pixel-level adversarial perturbations. Furthermore, REET also enables efficient and robust training of deep learning pipelines in computational pathology. Python implementation of REET is available at https://github.com/alexjfoote/reetoolbox. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Biología Computacional , Programas Informáticos
13.
J Pathol ; 256(2): 174-185, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34698394

RESUMEN

The infiltration of T-lymphocytes in the stroma and tumour is an indication of an effective immune response against the tumour, resulting in better survival. In this study, our aim was to explore the prognostic significance of tumour-associated stroma infiltrating lymphocytes (TASILs) in head and neck squamous cell carcinoma (HNSCC) through an AI-based automated method. A deep learning-based automated method was employed to segment tumour, tumour-associated stroma, and lymphocytes in digitally scanned whole slide images of HNSCC tissue slides. The spatial patterns of lymphocytes and tumour-associated stroma were digitally quantified to compute the tumour-associated stroma infiltrating lymphocytes score (TASIL-score). Finally, the prognostic significance of the TASIL-score for disease-specific and disease-free survival was investigated using the Cox proportional hazard analysis. Three different cohorts of haematoxylin and eosin (H&E)-stained tissue slides of HNSCC cases (n = 537 in total) were studied, including publicly available TCGA head and neck cancer cases. The TASIL-score carries prognostic significance (p = 0.002) for disease-specific survival of HNSCC patients. The TASIL-score also shows a better separation between low- and high-risk patients compared with the manual tumour-infiltrating lymphocytes (TILs) scoring by pathologists for both disease-specific and disease-free survival. A positive correlation of TASIL-score with molecular estimates of CD8+ T cells was also found, which is in line with existing findings. To the best of our knowledge, this is the first study to automate the quantification of TASILs from routine H&E slides of head and neck cancer. Our TASIL-score-based findings are aligned with the clinical knowledge, with the added advantages of objectivity, reproducibility, and strong prognostic value. Although we validated our method on three different cohorts (n = 537 cases in total), a comprehensive evaluation on large multicentric cohorts is required before the proposed digital score can be adopted in clinical practice. © 2021 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Asunto(s)
Técnicas de Apoyo para la Decisión , Neoplasias de Cabeza y Cuello/inmunología , Linfocitos Infiltrantes de Tumor/inmunología , Carcinoma de Células Escamosas de Cabeza y Cuello/inmunología , Células del Estroma/inmunología , Linfocitos T/inmunología , Microambiente Tumoral/inmunología , Automatización de Laboratorios , Aprendizaje Profundo , Supervivencia sin Enfermedad , Femenino , Neoplasias de Cabeza y Cuello/mortalidad , Neoplasias de Cabeza y Cuello/patología , Neoplasias de Cabeza y Cuello/terapia , Humanos , Procesamiento de Imagen Asistido por Computador , Linfocitos Infiltrantes de Tumor/patología , Masculino , Microscopía , Valor Predictivo de las Pruebas , Reproducibilidad de los Resultados , Medición de Riesgo , Factores de Riesgo , Carcinoma de Células Escamosas de Cabeza y Cuello/mortalidad , Carcinoma de Células Escamosas de Cabeza y Cuello/patología , Carcinoma de Células Escamosas de Cabeza y Cuello/terapia , Células del Estroma/patología , Factores de Tiempo
14.
J Med Syst ; 47(1): 99, 2023 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-37715855

RESUMEN

Federated learning (FL), a relatively new area of research in medical image analysis, enables collaborative learning of a federated deep learning model without sharing the data of participating clients. In this paper, we propose FedDropoutAvg, a new federated learning approach for detection of tumor in images of colon tissue slides. The proposed method leverages the power of dropout, a commonly employed scheme to avoid overfitting in neural networks, in both client selection and federated averaging processes. We examine FedDropoutAvg against other FL benchmark algorithms for two different image classification tasks using a publicly available multi-site histopathology image dataset. We train and test the proposed model on a large dataset consisting of 1.2 million image tiles from 21 different sites. For testing the generalization of all models, we select held-out test sets from sites that were not used during training. We show that the proposed approach outperforms other FL methods and reduces the performance gap (to less than 3% in terms of AUC on independent test sites) between FL and a central deep learning model that requires all data to be shared for centralized training, demonstrating the potential of the proposed FedDropoutAvg model to be more generalizable than other state-of-the-art federated models. To the best of our knowledge, ours is the first study to effectively utilize the dropout strategy in a federated setting for tumor detection in histology images.


Asunto(s)
Algoritmos , Benchmarking , Humanos , Colon/diagnóstico por imagen , Conocimiento , Redes Neurales de la Computación
15.
Mod Pathol ; 35(9): 1151-1159, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35361889

RESUMEN

Oral epithelial dysplasia (OED) is a precursor state usually preceding oral squamous cell carcinoma (OSCC). Histological grading is the current gold standard for OED prognostication but is subjective and variable with unreliable outcome prediction. We explore if individual OED histological features can be used to develop and evaluate prognostic models for malignant transformation and recurrence prediction. Digitised tissue slides for a cohort of 109 OED cases were reviewed by three expert pathologists, where the prevalence and agreement of architectural and cytological histological features was assessed and association with clinical outcomes analysed using Cox proportional hazards regression and Kaplan-Meier curves. Within the cohort, the most prevalent features were basal cell hyperplasia (72%) and irregular surface keratin (60%), and least common were verrucous surface (26%), loss of epithelial cohesion (30%), lymphocytic band and dyskeratosis (34%). Several features were significant for transformation (p < 0.036) and recurrence (p < 0.015) including bulbous rete pegs, hyperchromatism, loss of epithelial cohesion, loss of stratification, suprabasal mitoses and nuclear pleomorphism. This led us to propose two prognostic scoring systems including a '6-point model' using the six features showing a greater statistical association with transformation and recurrence (bulbous rete pegs, hyperchromatism, loss of epithelial cohesion, loss of stratification, suprabasal mitoses, nuclear pleomorphism) and a 'two-point model' using the two features with highest inter-pathologist agreement (loss of epithelial cohesion and bulbous rete pegs). Both the 'six point' and 'two point' models showed good predictive ability (AUROC ≥ 0.774 for transformation and 0.726 for recurrence) with further improvement when age, gender and histological grade were added. These results demonstrate a correlation between individual OED histological features and prognosis for the first time. The proposed models have the potential to simplify OED grading and aid patient management. Validation on larger multicentre cohorts with prospective analysis is needed to establish their usefulness in clinical practice.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de Cabeza y Cuello , Neoplasias de la Boca , Lesiones Precancerosas , Carcinoma de Células Escamosas/patología , Transformación Celular Neoplásica/patología , Humanos , Hiperplasia , Neoplasias de la Boca/patología , Lesiones Precancerosas/patología , Pronóstico
16.
J Med Ethics ; 48(4): 278-284, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-33658334

RESUMEN

This paper explores ethical issues raised by whole slide image-based computational pathology. After briefly giving examples drawn from some recent literature of advances in this field, we consider some ethical problems it might be thought to pose. These arise from (1) the tension between artificial intelligence (AI) research-with its hunger for more and more data-and the default preference in data ethics and data protection law for the minimisation of personal data collection and processing; (2) the fact that computational pathology lends itself to kinds of data fusion that go against data ethics norms and some norms of biobanking; (3) the fact that AI methods are esoteric and produce results that are sometimes unexplainable (the so-called 'black box'problem) and (4) the fact that computational pathology is particularly dependent on scanning technology manufacturers with interests of their own in profit-making from data collection. We shall suggest that most of these issues are resolvable.


Asunto(s)
Inteligencia Artificial , Bancos de Muestras Biológicas , Humanos , Tecnología
17.
Int J Cancer ; 148(3): 560-571, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-32818326

RESUMEN

Gaps in the translation of research findings to clinical management have been recognized for decades. They exist for the diagnosis as well as the management of cancer. The international standards for cancer diagnosis are contained within the World Health Organization (WHO) Classification of Tumours, published by the International Agency for Research on Cancer (IARC) and known worldwide as the WHO Blue Books. In addition to their relevance to individual patients, these volumes provide a valuable contribution to cancer research and surveillance, fulfilling an important role in scientific evidence synthesis and international standard setting. However, the multidimensional nature of cancer classification, the way in which the WHO Classification of Tumours is constructed, and the scientific information overload in the field pose important challenges for the translation of research findings to tumour classification and hence cancer diagnosis. To help address these challenges, we have established the International Collaboration for Cancer Classification and Research (IC3 R) to provide a forum for the coordination of efforts in evidence generation, standard setting and best practice recommendations in the field of tumour classification. The first IC3 R meeting, held in Lyon, France, in February 2019, gathered representatives of major institutions involved in tumour classification and related fields to identify and discuss translational challenges in data comparability, standard setting, quality management, evidence evaluation and copyright, as well as to develop a collaborative plan for addressing these challenges.


Asunto(s)
Detección Precoz del Cáncer/normas , Neoplasias/clasificación , Neoplasias/diagnóstico , Medicina Basada en la Evidencia , Francia , Humanos , Cooperación Internacional , Guías de Práctica Clínica como Asunto , Organización Mundial de la Salud
18.
Br J Cancer ; 124(12): 1934-1940, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33875821

RESUMEN

BACKGROUND: This paper reviews recent literature employing Artificial Intelligence/Machine Learning (AI/ML) methods for diagnostic evaluation of head and neck cancers (HNC) using automated image analysis. METHODS: Electronic database searches using MEDLINE via OVID, EMBASE and Google Scholar were conducted to retrieve articles using AI/ML for diagnostic evaluation of HNC (2009-2020). No restrictions were placed on the AI/ML method or imaging modality used. RESULTS: In total, 32 articles were identified. HNC sites included oral cavity (n = 16), nasopharynx (n = 3), oropharynx (n = 3), larynx (n = 2), salivary glands (n = 2), sinonasal (n = 1) and in five studies multiple sites were studied. Imaging modalities included histological (n = 9), radiological (n = 8), hyperspectral (n = 6), endoscopic/clinical (n = 5), infrared thermal (n = 1) and optical (n = 1). Clinicopathologic/genomic data were used in two studies. Traditional ML methods were employed in 22 studies (69%), deep learning (DL) in eight studies (25%) and a combination of these methods in two studies (6%). CONCLUSIONS: There is an increasing volume of studies exploring the role of AI/ML to aid HNC detection using a range of imaging modalities. These methods can achieve high degrees of accuracy that can exceed the abilities of human judgement in making data predictions. Large-scale multi-centric prospective studies are required to aid deployment into clinical practice.


Asunto(s)
Inteligencia Artificial , Neoplasias de Cabeza y Cuello/diagnóstico , Procesamiento de Imagen Asistido por Computador/métodos , Neoplasias de Cabeza y Cuello/patología , Humanos , Aprendizaje Automático , Oncología Médica/métodos , Oncología Médica/tendencias , Reconocimiento de Normas Patrones Automatizadas
19.
Cytometry A ; 99(7): 732-742, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33486882

RESUMEN

Urine cytology is a test for the detection of high-grade bladder cancer. In clinical practice, the pathologist would manually scan the sample under the microscope to locate atypical and malignant cells. They would assess the morphology of these cells to make a diagnosis. Accurate identification of atypical and malignant cells in urine cytology is a challenging task and is an essential part of identifying different diagnosis with low-risk and high-risk malignancy. Computer-assisted identification of malignancy in urine cytology can be complementary to the clinicians for treatment management and in providing advice for carrying out further tests. In this study, we presented a method for identifying atypical and malignant cells followed by their profiling to predict the risk of diagnosis automatically. For cell detection and classification, we employed two different deep learning-based approaches. Based on the best performing network predictions at the cell level, we identified low-risk and high-risk cases using the count of atypical cells and the total count of atypical and malignant cells. The area under the receiver operating characteristic (ROC) curve shows that a total count of atypical and malignant cells is comparably better at diagnosis as compared to the count of malignant cells only. We obtained area under the ROC curve with the count of malignant cells and the total count of atypical and malignant cells as 0.81 and 0.83, respectively. Our experiments also demonstrate that the digital risk could be a better predictor of the final histopathology-based diagnosis. We also analyzed the variability in annotations at both cell and whole slide image level and also explored the possible inherent rationales behind this variability.


Asunto(s)
Aprendizaje Profundo , Citodiagnóstico , Curva ROC , Medición de Riesgo
20.
Histopathology ; 77(4): 631-645, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32618014

RESUMEN

AIMS: Tumour genotype and phenotype are related and can predict outcome. In this study, we hypothesised that the visual assessment of breast cancer (BC) morphological features can provide valuable insight into underlying molecular profiles. METHODS AND RESULTS: The Cancer Genome Atlas (TCGA) BC cohort was used (n = 743) and morphological features, including Nottingham grade and its components and nucleolar prominence, were assessed utilising whole-slide images (WSIs). Two independent scores were assigned, and discordant cases were utilised to represent cases with intermediate morphological features. Differentially expressed genes (DEGs) were identified for each feature, compared among concordant/discordant cases and tested for specific pathways. Concordant grading was observed in 467 of 743 (63%) of cases. Among concordant case groups, eight common DEGs (UGT8, DDC, RGR, RLBP1, SPRR1B, CXorf49B, PSAPL1 and SPRR2G) were associated with overall tumour grade and its components. These genes are related mainly to cellular proliferation, differentiation and metabolism. The number of DEGs in cases with discordant grading was larger than those identified in concordant cases. The largest number of DEGs was observed in discordant grade 1:3 cases (n = 1185). DEGs were identified for each discordant component. Some DEGs were uniquely associated with well-defined specific morphological features, whereas expression/co-expression of other genes was identified across multiple features and underlined intermediate morphological features. CONCLUSION: Morphological features are probably related to distinct underlying molecular profiles that drive both morphology and behaviour. This study provides further evidence to support the use of image-based analysis of WSIs, including artificial intelligence algorithms, to predict tumour molecular profiles and outcome.


Asunto(s)
Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Citodiagnóstico/métodos , Femenino , Perfilación de la Expresión Génica/métodos , Humanos , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA