Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(16): e2217864120, 2023 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-37043533

RESUMEN

Aberrant activity of cyclin-dependent kinase (Cdk5) has been implicated in various neurodegenerative diseases. This deleterious effect is mediated by pathological cleavage of the Cdk5 activator p35 into the truncated product p25, leading to prolonged Cdk5 activation and altered substrate specificity. Elevated p25 levels have been reported in humans and rodents with neurodegeneration, and the benefit of genetically blocking p25 production has been demonstrated previously in rodent and human neurodegenerative models. Here, we report a 12-amino-acid-long peptide fragment derived from Cdk5 (Cdk5i) that is considerably smaller than existing peptide inhibitors of Cdk5 (P5 and CIP) but shows high binding affinity toward the Cdk5/p25 complex, disrupts the interaction of Cdk5 with p25, and lowers Cdk5/p25 kinase activity. When tagged with a fluorophore (FITC) and the cell-penetrating transactivator of transcription (TAT) sequence, the Cdk5i-FT peptide exhibits cell- and brain-penetrant properties and confers protection against neurodegenerative phenotypes associated with Cdk5 hyperactivity in cell and mouse models of neurodegeneration, highlighting Cdk5i's therapeutic potential.


Asunto(s)
Quinasa 5 Dependiente de la Ciclina , Péptidos , Ratones , Animales , Humanos , Quinasa 5 Dependiente de la Ciclina/metabolismo , Fosforilación , Péptidos/metabolismo , Fragmentos de Péptidos/metabolismo , Fenotipo
2.
Mol Psychiatry ; 28(6): 2549-2562, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37198262

RESUMEN

Environmental toxicant exposure, including air pollution, is increasing worldwide. However, toxicant exposures are not equitably distributed. Rather, low-income and minority communities bear the greatest burden, along with higher levels of psychosocial stress. Both air pollution and maternal stress during pregnancy have been linked to neurodevelopmental disorders such as autism, but biological mechanisms and targets for therapeutic intervention remain poorly understood. We demonstrate that combined prenatal exposure to air pollution (diesel exhaust particles, DEP) and maternal stress (MS) in mice induces social behavior deficits only in male offspring, in line with the male bias in autism. These behavioral deficits are accompanied by changes in microglial morphology and gene expression as well as decreased dopamine receptor expression and dopaminergic fiber input in the nucleus accumbens (NAc). Importantly, the gut-brain axis has been implicated in ASD, and both microglia and the dopamine system are sensitive to the composition of the gut microbiome. In line with this, we find that the composition of the gut microbiome and the structure of the intestinal epithelium are significantly shifted in DEP/MS-exposed males. Excitingly, both the DEP/MS-induced social deficits and microglial alterations in males are prevented by shifting the gut microbiome at birth via a cross-fostering procedure. However, while social deficits in DEP/MS males can be reversed by chemogenetic activation of dopamine neurons in the ventral tegmental area, modulation of the gut microbiome does not impact dopamine endpoints. These findings demonstrate male-specific changes in the gut-brain axis following DEP/MS and suggest that the gut microbiome is an important modulator of both social behavior and microglia.


Asunto(s)
Dopamina , Microglía , Embarazo , Femenino , Ratones , Masculino , Animales , Microglía/metabolismo , Dopamina/metabolismo , Conducta Social , Emisiones de Vehículos , Neuronas Dopaminérgicas
3.
Pediatr Res ; 93(1): 56-62, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35568732

RESUMEN

BACKGROUND: Measurement of neonatal team resuscitation performance is critical to identify opportunities for improvement and to target education. An effective tool to measure team performance during infant resuscitations is lacking. METHODS: We developed an in-hospital infant resuscitation performance tool (Infa-RePT) using the modified Delphi method. We employed a QI framework and targeted interventions, including the use of role responsibility checklists, mock codes, and an educational video. We tracked Infa-RePT scores, mock code team attendance, and confidence surveys. Our specific aim was to improve Infa-RePT score from a baseline of 7.4 to <5 (lower is better) over a 26-month period. RESULTS: Twenty-five elements reached >80% consensus as essential components to include on the Infa-RePT. Independent observation showed 86% concordance on checklist items. Simulation (n = 26) and unit-based code (n = 10) Infa-RePT scores showed significant improvement after project start from 7.4 to 4.2 (p < 0.01) with special cause variation noted on control chart analysis. No significant difference was observed between simulations and in-unit codes. Staff confidence self-reports improved over the study period. CONCLUSIONS: Use of a novel scoring tool can help monitor team progress over time and identify areas for improvement. Focused interventions can improve resuscitation team performance. IMPACT: We developed and used a novel, comprehensive measurement tool for team infant resuscitation performance in both simulation and in-unit settings. Using QI methodology, team performance improved after the enhancement of a mock code simulation program. Review of team performance scores can highlight key areas to target interventions and monitor progress over time.


Asunto(s)
Competencia Clínica , Grupo de Atención al Paciente , Humanos , Lactante , Recién Nacido , Resucitación/métodos , Encuestas y Cuestionarios
4.
Angew Chem Int Ed Engl ; 57(1): 348-353, 2018 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-29067779

RESUMEN

The spread of antibiotic resistance is a major challenge for the treatment of Mycobacterium tuberculosis infections. In addition, the efficacy of drugs is often limited by the restricted permeability of the mycomembrane. Frontline antibiotics inhibit mycomembrane biosynthesis, leading to rapid cell death. Inspired by this mechanism, we exploited ß-lactones as putative mycolic acid mimics to block serine hydrolases involved in their biosynthesis. Among a collection of ß-lactones, we found one hit with potent anti-mycobacterial and bactericidal activity. Chemical proteomics using an alkynylated probe identified Pks13 and Ag85 serine hydrolases as major targets. Validation through enzyme assays and customized 13 C metabolite profiling showed that both targets are functionally impaired by the ß-lactone. Co-administration with front-line antibiotics enhanced the potency against M. tuberculosis by more than 100-fold, thus demonstrating the therapeutic potential of targeting mycomembrane biosynthesis serine hydrolases.


Asunto(s)
Antituberculosos/farmacología , Lactonas/farmacología , Mycobacterium tuberculosis/efectos de los fármacos , Ácidos Micólicos/antagonistas & inhibidores , Aciltransferasas/efectos de los fármacos , Antígenos Bacterianos/efectos de los fármacos , Proteínas Bacterianas/efectos de los fármacos , Permeabilidad de la Membrana Celular/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Mycobacterium tuberculosis/metabolismo , Ácidos Micólicos/metabolismo , Sintasas Poliquetidas/efectos de los fármacos
5.
Emerg Infect Dis ; 22(3): 365-9, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26886068

RESUMEN

The nontuberculous mycobacteria (NTM), defined as any mycobacterial pathogen other than Mycobacterium tuberculosis or Mycobacterium leprae, are a diverse group of pathogens that collectively cause a substantive but often unappreciated worldwide burden of illness. Although NTMs may cause illness similar to M. tuberculosis, these pathogens generally do not respond to classic tuberculosis (TB) drug regimens, resulting in misdiagnosis and poor treatment, particularly in resource-poor settings. Although a few high-quality epidemiologic surveys have been made on the topic, existing evidence suggests that NTM-associated disease is much more common than previously thought: more common than TB in the industrialized world and likely increasing in prevalence globally. Despite this evidence, these organisms remain markedly understudied, and few international grants support basic science and clinical research. Here we suggest that the considerable efforts in developing new treatments and diagnostics for TB can be harnessed in the fight against NTM-associated illnesses.


Asunto(s)
Antituberculosos/uso terapéutico , Infecciones por Mycobacterium no Tuberculosas/dietoterapia , Infecciones por Mycobacterium no Tuberculosas/diagnóstico , Tuberculosis/diagnóstico , Tuberculosis/tratamiento farmacológico , Investigación Biomédica , Humanos , Mycobacterium tuberculosis , Micobacterias no Tuberculosas
6.
EMBO J ; 31(6): 1529-41, 2012 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-22286948

RESUMEN

Mycobacterium tuberculosis (Mtb) contains two clpP genes, both of which are essential for viability. We expressed and purified Mtb ClpP1 and ClpP2 separately. Although each formed a tetradecameric structure and was processed, they lacked proteolytic activity. We could, however, reconstitute an active, mixed ClpP1P2 complex after identifying N-blocked dipeptides that stimulate dramatically (>1000-fold) ClpP1P2 activity against certain peptides and proteins. These activators function cooperatively to induce the dissociation of ClpP1 and ClpP2 tetradecamers into heptameric rings, which then re-associate to form the active ClpP1P2 2-ring mixed complex. No analogous small molecule-induced enzyme activation mechanism involving dissociation and re-association of multimeric rings has been described. ClpP1P2 possesses chymotrypsin and caspase-like activities, and ClpP1 and ClpP2 differ in cleavage preferences. The regulatory ATPase ClpC1 was purified and shown to increase hydrolysis of proteins by ClpP1P2, but not peptides. ClpC1 did not activate ClpP1 or ClpP2 homotetradecamers and stimulated ClpP1P2 only when both ATP and a dipeptide activator were present. ClpP1P2 activity, its unusual activation mechanism and ClpC1 ATPase represent attractive drug targets to combat tuberculosis.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Mycobacterium tuberculosis/enzimología , Serina Endopeptidasas/química , Serina Endopeptidasas/metabolismo , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfato/metabolismo , Proteínas Bacterianas/genética , Sitios de Unión , Caspasas/metabolismo , Quimotripsina/metabolismo , Hidrólisis , Mycobacterium tuberculosis/genética , Péptido Hidrolasas/química , Péptido Hidrolasas/genética , Péptido Hidrolasas/metabolismo , Péptidos/metabolismo , Conformación Proteica , Serina Endopeptidasas/genética
7.
PLoS Pathog ; 10(3): e1003994, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24603869

RESUMEN

Unlike most bacterial species, Mycobacterium tuberculosis depends on the Clp proteolysis system for survival even in in vitro conditions. We hypothesized that Clp is required for the physiologic turnover of mycobacterial proteins whose accumulation is deleterious to bacterial growth and survival. To identify cellular substrates, we employed quantitative proteomics and transcriptomics to identify the set of proteins that accumulated upon the loss of functional Clp protease. Among the set of potential Clp substrates uncovered, we were able to unambiguously identify WhiB1, an essential transcriptional repressor capable of auto-repression, as a substrate of the mycobacterial Clp protease. Dysregulation of WhiB1 turnover had a toxic effect that was not rescued by repression of whiB1 transcription. Thus, under normal growth conditions, Clp protease is the predominant regulatory check on the levels of potentially toxic cellular proteins. Our findings add to the growing evidence of how post-translational regulation plays a critical role in the regulation of bacterial physiology.


Asunto(s)
Proteínas Bacterianas/metabolismo , Endopeptidasa Clp/metabolismo , Mycobacterium tuberculosis/metabolismo , Procesamiento Proteico-Postraduccional/fisiología , Factores de Transcripción/metabolismo , Reacción en Cadena de la Polimerasa , Proteolisis , Proteómica
8.
PLoS Pathog ; 8(2): e1002511, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22359499

RESUMEN

In most bacteria, Clp protease is a conserved, non-essential serine protease that regulates the response to various stresses. Mycobacteria, including Mycobacterium tuberculosis (Mtb) and Mycobacterium smegmatis, unlike most well studied prokaryotes, encode two ClpP homologs, ClpP1 and ClpP2, in a single operon. Here we demonstrate that the two proteins form a mixed complex (ClpP1P2) in mycobacteria. Using two different approaches, promoter replacement, and a novel system of inducible protein degradation, leading to inducible expression of clpP1 and clpP2, we demonstrate that both genes are essential for growth and that a marked depletion of either one results in rapid bacterial death. ClpP1P2 protease appears important in degrading missense and prematurely terminated peptides, as partial depletion of ClpP2 reduced growth specifically in the presence of antibiotics that increase errors in translation. We further show that the ClpP1P2 protease is required for the degradation of proteins tagged with the SsrA motif, a tag co-translationally added to incomplete protein products. Using active site mutants of ClpP1 and ClpP2, we show that the activity of each subunit is required for proteolysis, for normal growth of Mtb in vitro and during infection of mice. These observations suggest that the Clp protease plays an unusual and essential role in Mtb and may serve as an ideal target for antimycobacterial therapy.


Asunto(s)
Proteínas Bacterianas/metabolismo , Viabilidad Microbiana , Mycobacterium tuberculosis/fisiología , Serina Endopeptidasas/metabolismo , Tuberculosis/metabolismo , Animales , Ratones , Ratones Endogámicos C57BL , Proteolisis , Tuberculosis/genética
9.
bioRxiv ; 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-39026777

RESUMEN

One third of women in the United States are affected by obesity during pregnancy. Maternal obesity (MO) is associated with an increased risk of neurodevelopmental and metabolic disorders in the offspring. The placenta, located at the maternal-fetal interface, is a key organ determining fetal development and likely contributes to programming of long-term offspring health. We profiled the term placental transcriptome in humans (pre-pregnancy BMI 35+ [MO condition] or 18.5-25 [lean condition]) using single-nucleus RNA-seq to compare expression profiles in MO versus lean conditions, and to reveal potential mechanisms underlying offspring disease risk. We recovered 62,864 nuclei of high quality from 10 samples each from the maternal-facing and fetal-facing sides of the placenta. On both sides in several cell types, MO was associated with upregulation of hypoxia response genes. On the maternal-facing side only, hypoxia gene expression was associated with offspring neurodevelopmental measures, in Gen3G, an independent pregnancy cohort with bulk placental tissue RNA-seq. We leveraged Gen3G to determine genes that correlated with impaired neurodevelopment and found these genes to be most highly expressed in extravillous trophoblasts (EVTs). EVTs further showed the strongest correlation between neurodevelopment impairment gene scores (NDIGSs) and the hypoxia gene score. We reanalyzed gene expression of cultured EVTs, and found increased NDIGSs associated with exposure to hypoxia. Among EVTs, accounting for the hypoxia gene score attenuated 44% of the association between BMI and NDIGSs. These data suggest that hypoxia in EVTs may be a key process in the neurodevelopmental programming of fetal exposure to MO.

10.
Nat Commun ; 15(1): 6744, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39112447

RESUMEN

Demyelination is a common pathological feature in a wide range of diseases, characterized by the loss of myelin sheath and myelin-supporting oligodendrocytes. These losses lead to impaired axonal function, increased vulnerability of axons to damage, and result in significant brain atrophy and neuro-axonal degeneration. Multiple pathomolecular processes contribute to neuroinflammation, oligodendrocyte cell death, and progressive neuronal dysfunction. In this study, we use the cuprizone mouse model of demyelination to investigate long-term non-invasive gamma entrainment using sensory stimulation as a potential therapeutic intervention for promoting myelination and reducing neuroinflammation in male mice. Here, we show that multisensory gamma stimulation mitigates demyelination, promotes oligodendrogenesis, preserves functional integrity and synaptic plasticity, attenuates oligodendrocyte ferroptosis-induced cell death, and reduces brain inflammation. Thus, the protective effects of multisensory gamma stimulation on myelin and anti-neuroinflammatory properties support its potential as a therapeutic approach for demyelinating disorders.


Asunto(s)
Cuprizona , Enfermedades Desmielinizantes , Modelos Animales de Enfermedad , Vaina de Mielina , Oligodendroglía , Animales , Cuprizona/toxicidad , Masculino , Enfermedades Desmielinizantes/inducido químicamente , Enfermedades Desmielinizantes/terapia , Enfermedades Desmielinizantes/patología , Ratones , Oligodendroglía/metabolismo , Oligodendroglía/patología , Vaina de Mielina/metabolismo , Ratones Endogámicos C57BL , Ferroptosis , Plasticidad Neuronal , Encéfalo/patología , Encéfalo/metabolismo , Enfermedades Neuroinflamatorias/inducido químicamente , Enfermedades Neuroinflamatorias/patología
11.
Neuron ; 111(23): 3706-3709, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-37794591

RESUMEN

Early-life environments have an immense influence on long-term health outcomes. We have started to elucidate the mechanisms underlying this association but have made little progress in reducing the disease burden of environmentally mediated neurological and psychiatric illness. Here, we highlight barriers to innovation and how they may be overcome.


Asunto(s)
Trastornos Mentales , Humanos , Niño , Encéfalo
12.
Neurobiol Sleep Circadian Rhythms ; 14: 100085, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36567958

RESUMEN

Sleep is an essential component of development. Developmental sleep disruption (DSD) impacts brain maturation and has been associated with significant consequences on socio-emotional development. In humans, poor sleep during infancy and adolescence affects neurodevelopmental outcomes and may be a risk factor for the development of autism spectrum disorder (ASD) or other neuropsychiatric illness. Given the wide-reaching and enduring consequences of DSD, identifying underlying mechanisms is critical to best inform interventions with translational capacity. In rodents, studies have identified some mechanisms and neural circuits by which DSD causes later social, emotional, sensorimotor, and cognitive changes. However, these studies spanned methodological differences, including different developmental timepoints for both sleep disruption and testing, different DSD paradigms, and even different rodent species. In this scoping review on DSD in rodents, we synthesize these various studies into a cohesive framework to identify common neural mechanisms underlying DSD-induced dysfunction in brain and behavior. Ultimately, this review serves the goal to inform the generation of novel translational interventions for human developmental disorders featuring sleep disruption.

13.
Nat Neurosci ; 26(5): 737-750, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37095396

RESUMEN

Pathological hallmarks of Alzheimer's disease (AD) precede clinical symptoms by years, indicating a period of cognitive resilience before the onset of dementia. Here, we report that activation of cyclic GMP-AMP synthase (cGAS) diminishes cognitive resilience by decreasing the neuronal transcriptional network of myocyte enhancer factor 2c (MEF2C) through type I interferon (IFN-I) signaling. Pathogenic tau activates cGAS and IFN-I responses in microglia, in part mediated by cytosolic leakage of mitochondrial DNA. Genetic ablation of Cgas in mice with tauopathy diminished the microglial IFN-I response, preserved synapse integrity and plasticity and protected against cognitive impairment without affecting the pathogenic tau load. cGAS ablation increased, while activation of IFN-I decreased, the neuronal MEF2C expression network linked to cognitive resilience in AD. Pharmacological inhibition of cGAS in mice with tauopathy enhanced the neuronal MEF2C transcriptional network and restored synaptic integrity, plasticity and memory, supporting the therapeutic potential of targeting the cGAS-IFN-MEF2C axis to improve resilience against AD-related pathological insults.


Asunto(s)
Microglía , Nucleotidiltransferasas , Proteínas tau , Animales , Ratones , Cognición , Inmunidad Innata , Interferones , Factores de Transcripción MEF2/genética , Microglía/metabolismo , Nucleotidiltransferasas/genética , Nucleotidiltransferasas/metabolismo
14.
Antimicrob Agents Chemother ; 56(1): 324-31, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22024828

RESUMEN

The 1,5-diarylpyrrole derivative BM212 was previously shown to be active against multidrug-resistant clinical isolates and Mycobacterium tuberculosis residing within macrophages as well as against Mycobacterium avium and other atypical mycobacteria. To determine its mechanism of action, we identified the cellular target. Spontaneous Mycobacterium smegmatis, Mycobacterium bovis BCG, and M. tuberculosis H37Rv mutants that were resistant to BM212 were isolated. By the screening of genomic libraries and by whole-genome sequencing, we found that all the characterized mutants showed mutations in the mmpL3 gene, allowing us to conclude that resistance to BM212 maps to the MmpL3 protein, a member of the MmpL (mycobacterial membrane protein, large) family. Susceptibility was unaffected by the efflux pump inhibitors reserpine, carbonylcyanide m-chlorophenylhydrazone, and verapamil. Uptake/efflux experiments with [(14)C]BM212 demonstrated that resistance is not driven by the efflux of BM212. Together, these data strongly suggest that the MmpL3 protein is the cellular target of BM212.


Asunto(s)
Antituberculosos/farmacología , Genoma Bacteriano , Proteínas de Transporte de Membrana/genética , Mycobacterium bovis/genética , Mycobacterium smegmatis/genética , Mycobacterium tuberculosis/genética , Piperazinas/farmacología , Pirroles/farmacología , Animales , Radioisótopos de Carbono , Carbonil Cianuro m-Clorofenil Hidrazona/análogos & derivados , Carbonil Cianuro m-Clorofenil Hidrazona/farmacología , Bovinos , Análisis Mutacional de ADN , Farmacorresistencia Bacteriana Múltiple , Biblioteca Genómica , Humanos , Pruebas de Sensibilidad Microbiana , Mutación , Infecciones por Mycobacterium no Tuberculosas/tratamiento farmacológico , Infecciones por Mycobacterium no Tuberculosas/microbiología , Mycobacterium bovis/efectos de los fármacos , Mycobacterium smegmatis/efectos de los fármacos , Mycobacterium tuberculosis/efectos de los fármacos , Reserpina/farmacología , Verapamilo/farmacología
15.
Sci Transl Med ; 13(618): eabd7695, 2021 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-34731014

RESUMEN

Recent increases in human longevity have been accompanied by a rise in the incidence of dementia, highlighting the need to preserve cognitive function in an aging population. A small percentage of individuals with pathological hallmarks of neurodegenerative disease are able to maintain normal cognition. Although the molecular mechanisms that govern this neuroprotection remain unknown, individuals that exhibit cognitive resilience (CgR) represent a unique source of therapeutic insight. For both humans and animal models, living in an enriched, cognitively stimulating environment is the most effective known inducer of CgR. To understand potential drivers of this phenomenon, we began by profiling the molecular changes that arise from environmental enrichment in mice, which led to the identification of MEF2 transcription factors (TFs). We next turned to repositories of human clinical and brain transcriptomic data, where we found that the MEF2 transcriptional network was overrepresented among genes that are most predictive of end-stage cognition. Through single-nucleus RNA sequencing of cortical tissue from resilient and nonresilient individuals, we further confirmed up-regulation of MEF2C in resilient individuals to a subpopulation of excitatory neurons. Last, to determine the causal impact of MEF2 on cognition in the context of neurodegeneration, we overexpressed Mef2a/c in the PS19 mouse model of tauopathy and found that this was sufficient to improve cognitive flexibility and reduce hyperexcitability. Overall, our findings reveal a previously unappreciated role for MEF2 TFs in promoting CgR, highlighting their potential as biomarkers or therapeutic targets for neurodegeneration and healthy aging.


Asunto(s)
Factores de Transcripción MEF2 , Enfermedades Neurodegenerativas , Animales , Encéfalo/metabolismo , Cognición/fisiología , Redes Reguladoras de Genes , Humanos , Factores de Transcripción MEF2/genética , Factores de Transcripción MEF2/metabolismo , Ratones , Enfermedades Neurodegenerativas/genética
16.
J Perinatol ; 41(5): 940-951, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33293665

RESUMEN

The coronavirus disease 2019 (COVID-19) pandemic, resulting from infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has caused severe and widespread illness in adults, including pregnant women, while rarely infecting neonates. An incomplete understanding of disease pathogenesis and viral spread has resulted in evolving guidelines to reduce transmission from infected mothers to neonates. Fortunately, the risk of neonatal infection via perinatal/postnatal transmission is low when recommended precautions are followed. However, the psychosocial implications of these practices and racial/ethnic disparities highlighted by this pandemic must also be addressed when caring for mothers and their newborns. This review provides a comprehensive overview of neonatal-perinatal perspectives of COVID-19, ranging from the basic science of infection and recommendations for care of pregnant women and neonates to important psychosocial, ethical, and racial/ethnic topics emerging as a result of both the pandemic and the response of the healthcare community to the care of infected individuals.


Asunto(s)
COVID-19/transmisión , Transmisión Vertical de Enfermedad Infecciosa/estadística & datos numéricos , Complicaciones Infecciosas del Embarazo/epidemiología , Resultado del Embarazo/epidemiología , SARS-CoV-2/fisiología , Corticoesteroides/uso terapéutico , COVID-19/epidemiología , Manejo de la Enfermedad , Femenino , Conocimientos, Actitudes y Práctica en Salud , Humanos , Recién Nacido , Transmisión Vertical de Enfermedad Infecciosa/prevención & control , Evaluación de Resultado en la Atención de Salud , Embarazo , Complicaciones Infecciosas del Embarazo/tratamiento farmacológico , Tratamiento Farmacológico de COVID-19
17.
Nat Neurosci ; 23(12): 1606-1617, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33020654

RESUMEN

The epigenome and three-dimensional (3D) genomic architecture are emerging as key factors in the dynamic regulation of different transcriptional programs required for neuronal functions. In this study, we used an activity-dependent tagging system in mice to determine the epigenetic state, 3D genome architecture and transcriptional landscape of engram cells over the lifespan of memory formation and recall. Our findings reveal that memory encoding leads to an epigenetic priming event, marked by increased accessibility of enhancers without the corresponding transcriptional changes. Memory consolidation subsequently results in spatial reorganization of large chromatin segments and promoter-enhancer interactions. Finally, with reactivation, engram neurons use a subset of de novo long-range interactions, where primed enhancers are brought in contact with their respective promoters to upregulate genes involved in local protein translation in synaptic compartments. Collectively, our work elucidates the comprehensive transcriptional and epigenomic landscape across the lifespan of memory formation and recall in the hippocampal engram ensemble.


Asunto(s)
Epigenómica , Hipocampo/fisiología , Memoria/fisiología , Recuerdo Mental/fisiología , Transcriptoma , Animales , Mapeo Encefálico , Consolidación de la Memoria/fisiología , Ratones , Ratones Transgénicos , Neuronas/fisiología , Sinapsis/metabolismo , Sinapsis/fisiología , Regulación hacia Arriba/fisiología
18.
Neoreviews ; 23(5): e359-e362, 2022 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-35490183
19.
Nat Med ; 22(5): 531-8, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-27043495

RESUMEN

Granulomas are the pathological hallmark of tuberculosis (TB). However, their function and mechanisms of formation remain poorly understood. To understand the role of granulomas in TB, we analyzed the proteomes of granulomas from subjects with tuberculosis in an unbiased manner. Using laser-capture microdissection, mass spectrometry and confocal microscopy, we generated detailed molecular maps of human granulomas. We found that the centers of granulomas have a pro-inflammatory environment that is characterized by the presence of antimicrobial peptides, reactive oxygen species and pro-inflammatory eicosanoids. Conversely, the tissue surrounding the caseum has a comparatively anti-inflammatory signature. These findings are consistent across a set of six human subjects and in rabbits. Although the balance between systemic pro- and anti-inflammatory signals is crucial to TB disease outcome, here we find that these signals are physically segregated within each granuloma. From the protein and lipid snapshots of human and rabbit lesions analyzed here, we hypothesize that the pathologic response to TB is shaped by the precise anatomical localization of these inflammatory pathways during the development of the granuloma.


Asunto(s)
Eicosanoides/inmunología , Granuloma/inmunología , Inflamación/inmunología , Especies Reactivas de Oxígeno/inmunología , Tuberculosis Pulmonar/inmunología , Animales , Ácido Araquidónico/metabolismo , Eicosanoides/metabolismo , Granuloma/metabolismo , Granuloma/patología , Humanos , Inmunohistoquímica , Inflamación/metabolismo , Inflamación/patología , Captura por Microdisección con Láser , Espectrometría de Masas , Microscopía Confocal , Proteómica , Conejos , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Tuberculosis Pulmonar/metabolismo , Tuberculosis Pulmonar/patología
20.
mBio ; 6(3): e00253-15, 2015 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-25944857

RESUMEN

UNLABELLED: A novel type of antibacterial screening method, a target mechanism-based whole-cell screening method, was developed to combine the advantages of target mechanism- and whole-cell-based approaches. A mycobacterial reporter strain with a synthetic phenotype for caseinolytic protease (ClpP1P2) activity was engineered, allowing the detection of inhibitors of this enzyme inside intact bacilli. A high-throughput screening method identified bortezomib, a human 26S proteasome drug, as a potent inhibitor of ClpP1P2 activity and bacterial growth. A battery of secondary assays was employed to demonstrate that bortezomib indeed exerts its antimicrobial activity via inhibition of ClpP1P2: Down- or upmodulation of the intracellular protease level resulted in hyper- or hyposensitivity of the bacteria, the drug showed specific potentiation of translation error-inducing aminoglycosides, ClpP1P2-specific substrate WhiB1 accumulated upon exposure, and growth inhibition potencies of bortezomib derivatives correlated with ClpP1P2 inhibition potencies. Furthermore, molecular modeling showed that the drug can bind to the catalytic sites of ClpP1P2. This work demonstrates the feasibility of target mechanism-based whole-cell screening, provides chemical validation of ClpP1P2 as a target, and identifies a drug in clinical use as a new lead compound for tuberculosis therapy. IMPORTANCE: During the last decade, antibacterial drug discovery relied on biochemical assays, rather than whole-cell approaches, to identify molecules that interact with purified target proteins derived by genomics. This approach failed to deliver antibacterial compounds with whole-cell activity, either because of cell permeability issues that medicinal chemistry cannot easily fix or because genomic data of essentiality insufficiently predicted the vulnerability of the target identified. As a consequence, the field largely moved back to a whole-cell approach whose main limitation is its black-box nature, i.e., that it requires trial-and-error chemistry because the cellular target is unknown. We developed a novel type of antibacterial screening method, target mechanism-based whole-cell screening, to combine the advantages of both approaches. We engineered a mycobacterial reporter strain with a synthetic phenotype allowing us to identify inhibitors of the caseinolytic protease (ClpP1P2) inside the cell. This approach identified bortezomib, an anticancer drug, as a specific inhibitor of ClpP1P2. We further confirmed the specific "on-target" activity of bortezomib by independent approaches including, but not limited to, genetic manipulation of the target level (over- and underexpressing strains) and by establishing a dynamic structure-activity relationship between ClpP1P2 and growth inhibition. Identifying an "on-target" compound is critical to optimize the efficacy of the compound without compromising its specificity. This work demonstrates the feasibility of target mechanism-based whole-cell screening methods, validates ClpP1P2 as a druggable target, and delivers a lead compound for tuberculosis therapy.


Asunto(s)
Antituberculosos/aislamiento & purificación , Bortezomib/aislamiento & purificación , Mycobacterium/efectos de los fármacos , Mycobacterium/enzimología , Inhibidores de Proteasas/aislamiento & purificación , Serina Endopeptidasas/metabolismo , Antituberculosos/farmacología , Bortezomib/farmacología , Dominio Catalítico , Evaluación Preclínica de Medicamentos/métodos , Reposicionamiento de Medicamentos , Ensayos Analíticos de Alto Rendimiento , Simulación de Dinámica Molecular , Inhibidores de Proteasas/farmacología , Unión Proteica , Conformación Proteica , Serina Endopeptidasas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA