Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Pharm ; 20(7): 3393-3402, 2023 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-37306238

RESUMEN

Deformable liposomes represent valuable drug carriers for cutaneous administration. Nevertheless, the fluid lipid membrane can favor the drug leakage during storage. Proliposomes may represent a suitable strategy to solve this issue. As an alternative, a novel carrier, which encloses hydrophobic drugs in the inner core of vesicles, namely, a drug-in-micelles-in-liposome system (DiMiL), has been proposed. In this work, we investigated the possible advantages of combining these two approaches to obtain a formulation able to enhance the skin penetration of cannabidiol (CBD). Proliposomes were prepared by spray-drying or slurry method testing lactose, sucrose, and trehalose as carriers at different sugar/lipid weight ratios. The ratio between soy-phosphatidylcholine (main lipid) and Tween 80 was instead fixed at 85:15 w/w. DiMiL systems were extemporaneously obtained by the hydration of proliposomes with a Kolliphor HS 15 micellar dispersion (containing CBD, when appropriate). Based on the technological properties, sucrose and trehalose at 2:1 sugar/lipid ratio resulted in the best carriers for spray-dried and "slurried" proliposomes, respectively. Cryo-EM images clearly showed the presence of micelles in the aqueous core of lipid vesicles and the presence of sugars did not alter the structural organization of DiMiL systems, as demonstrated by SAXS analyses. All formulations were highly deformable and able to control CBD release regardless of the presence of sugar. The permeation through human epidermis of CBD carried by DiMiL systems was significantly improved compared to that obtained loading the drug in conventional deformable liposomes with the same lipid composition or in an oil solution. Furthermore, the presence of trehalose led to a further slight increase of the flux. Altogether, these results demonstrated that proliposomes may be a valuable intermediate for the preparation of deformable liposome-based cutaneous dosage forms, improving the stability without compromising the overall performances.


Asunto(s)
Cannabidiol , Liposomas , Humanos , Liposomas/química , Micelas , Dispersión del Ángulo Pequeño , Trehalosa , Difracción de Rayos X , Lípidos/química , Tamaño de la Partícula
2.
Mol Pharm ; 18(11): 3979-3989, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34570510

RESUMEN

This work provides information on the features of low molecular weight hyaluronic acid (HA)-decorated liposomes to target resveratrol (RSV) in the skin. Deformable liposomes were made of soy-phosphatidylcholine with Tween 80 as the fluidizing agent. For HA conjugation, three different phosphoethanolamines were tested: 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine (DPPE), 1,2-dimyristoyl-sn-glycero-3-phosphoethanolamine (DMPE), and 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE). The different phosphoethanolamine-HA conjugates were inserted into the liposome bilayer by hydration (HA on both faces of the bilayer) or by the postinsertion method (HA only on the external face of the bilayer). The effect of these variables on deformability was experimentally assessed by an in-house method (K value, the lower the value, the higher the deformability) and molecular dynamics (MD) simulations. The results showed that the K values of HA-liposomes obtained by hydration were higher than the K values of HA-liposomes prepared by postinsertion, and both were at least 10-fold higher than the K values of the corresponding plain liposomes. The nature of the lipid anchor played a key role in deformability (DMPE > DOPE > DPPE) with high variability in the case of DOPE formulations. These data were justified by the trends found in silico for the bilayer bending modulus and the HA end-to-end distance. In addition to liposome flexibility, the HA extent seems to be the key factor governing the skin penetration of RSV. When the extent is higher, the amount of the drug retained in the skin is larger. Regarding skin permeation, a parabolic trend was recorded, and the optimal amount to favor skin permeation was an approximately 30 HA/phospholipid (µg/mmol) ratio. This study reports the first piece of evidence that it is possible to control drug delivery in the skin by tuning the amount of HA on the vesicle surface.


Asunto(s)
Diseño de Fármacos/métodos , Epidermis/metabolismo , Ácido Hialurónico/química , Resveratrol/administración & dosificación , Administración Cutánea , Dermatitis Atópica/tratamiento farmacológico , Humanos , Liposomas , Simulación de Dinámica Molecular , Tamaño de la Partícula , Permeabilidad , Psoriasis/tratamiento farmacológico , Resveratrol/farmacocinética
3.
Int J Pharm ; 661: 124413, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38960342

RESUMEN

Local drug delivery to the esophagus is hampered by rapid transit time and poor permeability of the mucosa. If some strategies aimed to improve the residence time have been proposed, non-invasive approaches to increase the drug penetration in the mucosa have not been described so far. Herein, we designed mucosa-penetrating liposomes to favor the penetration and retention of curcumin (CURC) in the esophagus. A novel mucosa penetrating peptide (MPP), SLENKGP, was selected by Phage Display and conjugated to pegylated liposomes at different PEG and MPP's surface densities. Pegylation assured a long residence time of liposomes (at least 30 min) in the esophagus in vivo, but it did not favor the penetration of CURC in the mucosa. MPP-decorated liposomes instead delivered a significant higher amount of CURC in the mucosa compared to naked pegylated liposomes. Confocal microscopy studies showed that naked pegylated liposomes remain confined in the superficial layers of the mucosa whereas MPP-decorated liposomes penetrate the whole epithelium. In vitro, MPP reduced the interaction of PEG with mucin, meanwhile favoring the paracellular penetration of liposomes across epithelial cell multilayers. In conclusion, pegylated liposomes represent a valid approach to target the esophagus and the surface functionalization with MPP enhances their penetration in the mucosa.


Asunto(s)
Curcumina , Sistemas de Liberación de Medicamentos , Mucosa Esofágica , Liposomas , Polietilenglicoles , Curcumina/administración & dosificación , Curcumina/farmacocinética , Curcumina/química , Polietilenglicoles/química , Animales , Sistemas de Liberación de Medicamentos/métodos , Mucosa Esofágica/metabolismo , Humanos , Esófago/metabolismo , Masculino , Permeabilidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA