RESUMEN
The spectro-kinetic characterization of complex catalytic materials, i.e. relating the observed reaction kinetics to spectroscopic descriptors of the catalyst state, presents a fundamental challenge with a potentially significant impact on various chemical technologies. We propose to reconcile the kinetic characteristics available from temporal analysis of products (TAP) pulse-response kinetic experiments with the spectroscopic data available from ambient pressure X-ray photoelectron spectroscopy (AP-XPS), using atomic layer deposition (ALD) to synthesize multicomponent model surfaces on 2D and 3D supports. The accumulated surface exposure to a key reactant (total number of collisions) is used as a common scale within which the results from the two techniques can be rigorously compared for microscopically-equivalent surfaces. This approach is illustrated by proof-of-principle TAP and AP-XPS experiments with PtIn/MgO/SiO2 catalysts for alkane dehydrogenation at 800 K. Similarly to industrially-relevant Pt-based bimetallic catalysts on high-surface area supports, the initial period of coke accumulation on the surface resulted in gradually decreased conversion and increased selectivity towards propylene. We were able to monitor the process of coke deposition with both AP-XPS and TAP. The evolution of the C 1s photoelectron spectra is aligned on the common exposure scale with the evolution of the coke amounts deposited per Pt site during a multi-pulse TAP experiment. Moreover, TAP provided quantitative kinetic descriptors of propane consumption and product mean residence time within this common exposure scale. The challenges and opportunities presented by this novel tandem methodology are discussed in the context of catalysis research.
RESUMEN
We report the phase and size-controlled synthesis of Fe-Pt nanoalloys, prepared via a two-step synthesis procedure. The first step is the deposition of bilayers consisting of iron oxide and Pt films of desired thicknesses using atomic layer deposition, followed by a temperature-programmed reduction treatment of the film under H2/N2 atmosphere. This method enables the phase pure synthesis of all three Fe-Pt alloy phases, namely Fe3Pt, FePt, and FePt3, as revealed by in situ x-ray diffraction and x-ray fluorescence measurements. It is also demonstrated that by changing the total thickness of the bilayers while keeping the Pt/(Pt + Fe) atomic ratio constant, the size of the resulting bimetallic nanoparticles can be tuned, as confirmed by scanning electron microscopic measurements.
RESUMEN
Atomic layer deposition (ALD) of noble metals is an attractive technology potentially applied in nanoelectronics and catalysis. Unlike the combustion-like mechanism shown by other noble metal ALD processes, the main palladium (Pd) ALD process using palladium(ii)hexafluoroacetylacetonate [Pd(hfac)2] as precursor is based on true reducing surface chemistry. In this work, a thorough investigation of plasma-enhanced Pd ALD is carried out by employing this precursor with different plasmas (H2*, NH3*, O2*) and plasma sequences (H2* + O2*, O2* + H2*) as co-reactants at varying temperatures, providing insights in the co-reactant and temperature dependence of the Pd growth per cycle (GPC). At all temperatures, films grown with only reducing co-reactants contain a large amount of carbon, while an additional O2* in the co-reactant sequence helps to obtain Pd films with much lower impurity concentrations. Remarkably, in situ XRD and SEM show an abrupt release of the carbon impurities during annealing at moderate temperatures in different atmospheres. In vacuo XPS measurements reveal the remaining species on the as-deposited surface after every exposure. Links are established between the particular surface termination prior to the precursor pulse and the observed differences in GPC, highlighting hydrogen as the key growth facilitator and carbon and oxygen as growth inhibitors. The increase in GPC with temperature for ALD sequences with H2* or NH3* prior to the precursor pulse is explained by an increase in the amount of hydrogen species that reside on the Pd surface which are available for reaction with the Pd(hfac)2 precursor.
RESUMEN
The increasing interest in atomic layer deposition (ALD) of Pt for the controlled synthesis of supported nanoparticles for catalysis demands an in-depth understanding of the nucleation controlled growth behaviour. We present an in situ investigation of Pt ALD on planar Si substrates, with native SiO2, by means of X-ray fluorescence (XRF) and grazing incidence small-angle X-ray scattering (GISAXS), using a custom-built synchrotron-compatible high-vacuum ALD setup and focusing on the thermal Pt ALD process, comprising (methylcyclopentadienyl)trimethylplatinum (MeCpPtMe3) and O2 gas at 300 °C. The evolution in key scattering features provides insights into the growth kinetics of Pt deposits from small nuclei to isolated islands and coalesced worm-like structures. An analysis approach is introduced to extract dynamic information on the average real space parameters, such as Pt cluster shape, size, and spacing. The results indicate a nucleation stage, followed by a diffusion-mediated particle growth regime that is marked by a decrease in average areal density and the formation of laterally elongated Pt clusters. Growth of the Pt nanoparticles is thus not only governed by the adsorption of Pt precursor molecules from the gas-phase and subsequent combustion of the ligands, but is largely determined by adsorption of migrating Pt species on the surface and diffusion-driven particle coalescence. Moreover, the influence of the Pt precursor dose on the particle nucleation and growth is investigated. It is found that the precursor dose influences the deposition rate (number of Pt atoms per cycle), while the particle morphology for a specific Pt loading is independent of the precursor dose used in the ALD process. Our results prove that combining in situ GISAXS and XRF provides an excellent experimental strategy to obtain new fundamental insights about the role of deposition parameters on the morphology of Pt ALD depositions. This knowledge is vital to improve control over the Pt nucleation stage and enable efficient synthesis of supported nanocatalysts.
RESUMEN
Bimetallic nanocatalysts are key enablers of current chemical technologies, including car exhaust converters and fuel cells, and play a crucial role in industry to promote a wide range of chemical reactions. However, owing to significant characterization challenges, insights in the dynamic phenomena that shape and change the working state of the catalyst await further refinement. Herein, we discuss the atomic-scale processes leading to mono- and bimetallic nanoparticle formation and highlight the dynamics and kinetics of lifetime changes in bimetallic catalysts with showcase examples for Pt-based systems. We discuss how inâ situ and operando X-ray spectroscopy, scattering, and diffraction can be used as a complementary toolbox to interrogate the working principles of today's and tomorrow's bimetallic nanocatalysts.
RESUMEN
Alloyed metal nanocatalysts are of environmental and economic importance in a plethora of chemical technologies. During the catalyst lifetime, supported alloy nanoparticles undergo dynamic changes which are well-recognized but still poorly understood. High-temperature O2 -H2 redox cycling was applied to mimic the lifetime changes in model Pt13 In9 nanocatalysts, while monitoring the induced changes by inâ situ quick X-ray absorption spectroscopy with one-second resolution. The different reaction steps involved in repeated Pt13 In9 segregation-alloying are identified and kinetically characterized at the single-cycle level. Over longer time scales, sintering phenomena are substantiated and the intraparticle structure is revealed throughout the catalyst lifetime. The inâ situ time-resolved observation of the dynamic habits of alloyed nanoparticles and their kinetic description can impact catalysis and other fields involving (bi)metallic nanoalloys.
RESUMEN
Downscaling of supported Pt structures to the nanoscale is motivated by the augmentation of the catalytic activity and selectivity, which depend on the particle size, shape and coverage. Harsh thermal and chemical conditions generally required for catalytic applications entail an undesirable particle coarsening, and consequently limit the catalyst lifetime. Herein we report an in situ synchrotron study on the stability of supported Pt nanoparticles and their stabilization using atomic layer deposition (ALD) as the stabilizing methodology against particle coarsening. Pt nanoparticles were thermally annealed up to 850 °C in an oxidizing environment while recording in situ synchrotron grazing incidence small angle X-ray scattering (GISAXS) 2D patterns, thereby obtaining continuous information about the particle radius evolution. Al2O3 overcoat as a protective capping layer against coarsening via ALD was investigated. In situ data proved that only 1 cycle of Al2O3 ALD caused an augmentation of the onset temperature for particle coarsening. Moreover, the results showed a dependence of the required overcoat thickness on the initial particle size and distribution, being more efficient (i.e. requiring lower thicknesses) when isolated particles are present on the sample surface. The Pt surface accessibility, which is decisive in catalytic applications, was analyzed using the low energy ion scattering (LEIS) technique, revealing a larger Pt surface accessibility for a sample with Al2O3 overcoat than for a sample without a protective layer after a long-term isothermal annealing.
RESUMEN
Wafer-scale, conformal, two-dimensional (2D) TiO2-Ga2O3 n-p heterostructures with a thickness of less than 10 nm were fabricated on the Si/SiO2 substrates by the atomic layer deposition (ALD) technique for the first time with subsequent post-deposition annealing at a temperature of 250 °C. The best deposition parameters were established. The structure and morphology of 2D TiO2-Ga2O3 n-p heterostructures were characterized by the scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), electrochemical impedance spectroscopy (EIS), etc. 2D TiO2-Ga2O3 n-p heterostructures demonstrated efficient photocatalytic activity towards methyl orange (MO) degradation at the UV light (λ = 254 nm) irradiation. The improvement of TiO2-Ga2O3 n-p heterostructure capabilities is due to the development of the defects on Ga2O3-TiO2 interface, which were able to trap electrons faster.
RESUMEN
Please be advised that the name of one of the coauthors in the original article [1] has been incorrectly spelled: 'Ranish M. Ramachandran' should be 'Ranjith K. Ramachandran'.
RESUMEN
A plasma-enhanced atomic layer deposition (PE-ALD) process to deposit metallic gold is reported, using the previously reported Me3Au(PMe3) precursor with H2 plasma as the reactant. The process has a deposition window from 50 to 120 °C with a growth rate of 0.030 ± 0.002 nm per cycle on gold seed layers, and it shows saturating behavior for both the precursor and reactant exposure. X-ray photoelectron spectroscopy measurements show that the gold films deposited at 120 °C are of higher purity than the previously reported ones (<1 at. % carbon and oxygen impurities and <0.1 at. % phosphorous). A low resistivity value was obtained (5.9 ± 0.3 µΩ cm), and X-ray diffraction measurements confirm that films deposited at 50 and 120 °C are polycrystalline. The process forms gold nanoparticles on oxide surfaces, which coalesce into wormlike nanostructures during deposition. Nanostructures grown at 120 °C are evaluated as substrates for free-space surface-enhanced Raman spectroscopy (SERS) and exhibit an excellent enhancement factor that is without optimization, only one order of magnitude weaker than state-of-the-art gold nanodome substrates. The reported gold PE-ALD process therefore offers a deposition method to create SERS substrates that are template-free and does not require lithography. Using this process, it is possible to deposit nanostructured gold layers at low temperatures on complex three-dimensional (3D) substrates, opening up opportunities for the application of gold ALD in flexible electronics, heterogeneous catalysis, or the preparation of 3D SERS substrates.
RESUMEN
Novel coating materials are constantly needed for current and future applications in the area of microelectronics, biocompatible materials, and energy-related devices. Molecular layer deposition (MLD) is answering this cry and is an increasingly important coating method for organic and hybrid organic-inorganic thin films. In this study, we have focused on hybrid inorganic-organic coatings, based on trimethylaluminum, monofunctional aromatic precursors, and ring-opening reactions with ozone. We present the MLD processes, where the films are produced with trimethylaluminum, one of the three aromatic precursors (phenol, 3-(trifluoromethyl)phenol, and 2-fluoro-4-(trifluoromethyl)benzaldehyde), ozone, and the fourth precursor, hydrogen peroxide. According to the in situ Fourier-transform infrared spectroscopy measurements, the hydrogen peroxide reacts with the surface carboxylic acid group, forming a peroxyacid structure (C(O)-O-OH), in the case of all three processes. In addition, molecular modeling for the processes with three different aromatic precursors was carried out. When combining these modeling results with the experimental research data, new interesting aspects of the film growth, reactions, and properties are exploited.
RESUMEN
Particle coarsening is the main cause for thermal deactivation and lifetime reduction of supported Pt nanocatalysts. Here, Atomic Layer Deposition (ALD) was used to prepare a model system of Pt nanoparticles with high control over the metal loading and the nanoparticle size and coverage. A series of samples with distinct as-deposited size and interparticle spacing was annealed under different oxygen environments while Grazing Incidence Small Angle X-ray Scattering (GISAXS) was employed as in situ tool for monitoring the change in average nanoparticle size. The obtained results revealed three morphological stages during the thermal treatment, which can be explained by (I) the formation of a PtO2 shell on stable Pt nanoparticles at low temperature (below 300 °C), (II) the reduction of the PtO2 shell at moderate temperature (300 to 600 °C), creating mobile species that trigger particle coarsening until a steady morphological state is reached, and (III) the evaporation of PtO2 at high temperature (above 650 °C), causing particle instability and coarsening reactivation. The onset temperatures for stages (II) and (III) were found to depend on the initial particle size and spacing as well as on the O2 partial pressure during annealing, and could be summarized in a morphological stability diagram for Pt nanoparticles. The coarsening model indicates an important role for the reduction of the PtO2 shell in inducing particle coarsening. The key role of the reduction process was corroborated through isothermal experiments under decreasing O2 partial pressure and through forced reduction experiments near room temperature via H2 exposure.
RESUMEN
Correction for 'Key role of surface oxidation and reduction processes in the coarsening of Pt nanoparticles' by Eduardo Solano et al., Nanoscale, 2017, 9, 13159-13170.
RESUMEN
Synthetic methods that allow for the controlled design of well-defined Pt nanoparticles are highly desirable for fundamental catalysis research. In this work, we propose a strategy that allows precise and independent control of the Pt particle size and coverage. Our approach exploits the versatility of the atomic layer deposition (ALD) technique by combining two ALD processes for Pt using different reactants. The particle areal density is controlled by tailoring the number of ALD cycles using trimethyl(methylcyclopentadienyl)platinum and oxygen, while subsequent growth using the same Pt precursor in combination with nitrogen plasma allows for tuning of the particle size at the atomic level. The excellent control over the particle morphology is clearly demonstrated by means of in situ and ex situ X-ray fluorescence and grazing incidence small angle X-ray scattering experiments, providing information about the Pt loading, average particle dimensions, and mean center-to-center particle distance.
RESUMEN
Since their early discovery, bimetallic nanoparticles have revolutionized various fields, including nanomagnetism and optics as well as heterogeneous catalysis. Knowledge buildup in the past decades has witnessed that the nanoparticle size and composition strongly impact the nanoparticle's properties and performance. Yet, conventional synthesis strategies lack proper control over the nanoparticle morphology and composition. Recently, atomically precise synthesis of bimetallic nanoparticles has been achieved by atomic layer deposition (ALD), alleviating particle size and compositional nonuniformities. However, this bimetal ALD strategy applies to noble metals only, a small niche within the extensive class of bimetallic alloys. We report an ALD-based approach for the tailored synthesis of bimetallic nanoparticles containing both noble and non-noble metals, here exemplified for Pt-In. First, a Pt/In2O3 bilayer is deposited by ALD, yielding precisely defined Pt-In nanoparticles after high-temperature H2 reduction. The nanoparticles' In content can be accurately controlled over the whole compositional range, and the particle size can be tuned from micrometers down to the nanometer scale. The size and compositional flexibility provided by this ALD-approach will trigger the fabrication of fully tailored bimetallic nanomaterials, including superior nanocatalysts.
RESUMEN
We present the in situ synthesis of Pt nanoparticles within MIL-101-Cr (MIL = Materials Institute Lavoisier) by means of atomic layer deposition (ALD). The obtained Pt@MIL-101 materials were characterized by means of N2 adsorption and X-ray powder diffraction (XRPD) measurements, showing that the structure of the metal organic framework was well preserved during the ALD deposition. X-ray fluorescence (XRF) and transmission electron microscopy (TEM) analysis confirmed the deposition of highly dispersed Pt nanoparticles with sizes determined by the MIL-101-Cr pore sizes and with an increased Pt loading for an increasing number of ALD cycles. The Pt@MIL-101 material was examined as catalyst in the hydrogenation of different linear and cyclic olefins at room temperature, showing full conversion for each substrate. Moreover, even under solvent free conditions, full conversion of the substrate was observed. A high concentration test has been performed showing that the Pt@MIL-101 is stable for a long reaction time without loss of activity, crystallinity and with very low Pt leaching.