Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 186(3): 543-559.e19, 2023 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-36669484

RESUMEN

Learning has been associated with modifications of synaptic and circuit properties, but the precise changes storing information in mammals have remained largely unclear. We combined genetically targeted voltage imaging with targeted optogenetic activation and silencing of pre- and post-synaptic neurons to study the mechanisms underlying hippocampal behavioral timescale plasticity. In mice navigating a virtual-reality environment, targeted optogenetic activation of individual CA1 cells at specific places induced stable representations of these places in the targeted cells. Optical elicitation, recording, and modulation of synaptic transmission in behaving mice revealed that activity in presynaptic CA2/3 cells was required for the induction of plasticity in CA1 and, furthermore, that during induction of these place fields in single CA1 cells, synaptic input from CA2/3 onto these same cells was potentiated. These results reveal synaptic implementation of hippocampal behavioral timescale plasticity and define a methodology to resolve synaptic plasticity during learning and memory in behaving mammals.


Asunto(s)
Región CA1 Hipocampal , Hipocampo , Ratones , Animales , Región CA1 Hipocampal/fisiología , Hipocampo/fisiología , Plasticidad Neuronal/fisiología , Aprendizaje/fisiología , Neuronas , Transmisión Sináptica/fisiología , Mamíferos
2.
Cell ; 186(20): 4325-4344.e26, 2023 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-37652010

RESUMEN

KCR channelrhodopsins (K+-selective light-gated ion channels) have received attention as potential inhibitory optogenetic tools but more broadly pose a fundamental mystery regarding how their K+ selectivity is achieved. Here, we present 2.5-2.7 Å cryo-electron microscopy structures of HcKCR1 and HcKCR2 and of a structure-guided mutant with enhanced K+ selectivity. Structural, electrophysiological, computational, spectroscopic, and biochemical analyses reveal a distinctive mechanism for K+ selectivity; rather than forming the symmetrical filter of canonical K+ channels achieving both selectivity and dehydration, instead, three extracellular-vestibule residues within each monomer form a flexible asymmetric selectivity gate, while a distinct dehydration pathway extends intracellularly. Structural comparisons reveal a retinal-binding pocket that induces retinal rotation (accounting for HcKCR1/HcKCR2 spectral differences), and design of corresponding KCR variants with increased K+ selectivity (KALI-1/KALI-2) provides key advantages for optogenetic inhibition in vitro and in vivo. Thus, discovery of a mechanism for ion-channel K+ selectivity also provides a framework for next-generation optogenetics.


Asunto(s)
Channelrhodopsins , Rhinosporidium , Humanos , Channelrhodopsins/química , Channelrhodopsins/genética , Channelrhodopsins/metabolismo , Channelrhodopsins/ultraestructura , Microscopía por Crioelectrón , Canales Iónicos , Potasio/metabolismo , Rhinosporidium/química
3.
Cell ; 185(4): 654-671.e22, 2022 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-35065713

RESUMEN

Sex hormones exert a profound influence on gendered behaviors. How individual sex hormone-responsive neuronal populations regulate diverse sex-typical behaviors is unclear. We performed orthogonal, genetically targeted sequencing of four estrogen receptor 1-expressing (Esr1+) populations and identified 1,415 genes expressed differentially between sexes or estrous states. Unique subsets of these genes were distributed across all 137 transcriptomically defined Esr1+ cell types, including estrous stage-specific ones, that comprise the four populations. We used differentially expressed genes labeling single Esr1+ cell types as entry points to functionally characterize two such cell types, BNSTprTac1/Esr1 and VMHvlCckar/Esr1. We observed that these two cell types, but not the other Esr1+ cell types in these populations, are essential for sex recognition in males and mating in females, respectively. Furthermore, VMHvlCckar/Esr1 cell type projections are distinct from those of other VMHvlEsr1 cell types. Together, projection and functional specialization of dimorphic cell types enables sex hormone-responsive populations to regulate diverse social behaviors.


Asunto(s)
Ciclo Estral/genética , Regulación de la Expresión Génica , Caracteres Sexuales , Conducta Sexual Animal/fisiología , Agresión , Animales , Aromatasa/metabolismo , Trastorno Autístico/genética , Receptor alfa de Estrógeno/genética , Receptor alfa de Estrógeno/metabolismo , Femenino , Perfilación de la Expresión Génica , Células HEK293 , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Neuronas/metabolismo , Conducta Social
4.
Cell ; 185(19): 3568-3587.e27, 2022 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-36113428

RESUMEN

Computational analysis of cellular activity has developed largely independently of modern transcriptomic cell typology, but integrating these approaches may be essential for full insight into cellular-level mechanisms underlying brain function and dysfunction. Applying this approach to the habenula (a structure with diverse, intermingled molecular, anatomical, and computational features), we identified encoding of reward-predictive cues and reward outcomes in distinct genetically defined neural populations, including TH+ cells and Tac1+ cells. Data from genetically targeted recordings were used to train an optimized nonlinear dynamical systems model and revealed activity dynamics consistent with a line attractor. High-density, cell-type-specific electrophysiological recordings and optogenetic perturbation provided supporting evidence for this model. Reverse-engineering predicted how Tac1+ cells might integrate reward history, which was complemented by in vivo experimentation. This integrated approach describes a process by which data-driven computational models of population activity can generate and frame actionable hypotheses for cell-type-specific investigation in biological systems.


Asunto(s)
Habénula , Recompensa , Dinámica Poblacional
5.
Cell ; 185(4): 672-689.e23, 2022 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-35114111

RESUMEN

ChRmine, a recently discovered pump-like cation-conducting channelrhodopsin, exhibits puzzling properties (large photocurrents, red-shifted spectrum, and extreme light sensitivity) that have created new opportunities in optogenetics. ChRmine and its homologs function as ion channels but, by primary sequence, more closely resemble ion pump rhodopsins; mechanisms for passive channel conduction in this family have remained mysterious. Here, we present the 2.0 Å resolution cryo-EM structure of ChRmine, revealing architectural features atypical for channelrhodopsins: trimeric assembly, a short transmembrane-helix 3, a twisting extracellular-loop 1, large vestibules within the monomer, and an opening at the trimer interface. We applied this structure to design three proteins (rsChRmine and hsChRmine, conferring further red-shifted and high-speed properties, respectively, and frChRmine, combining faster and more red-shifted performance) suitable for fundamental neuroscience opportunities. These results illuminate the conduction and gating of pump-like channelrhodopsins and point the way toward further structure-guided creation of channelrhodopsins for applications across biology.


Asunto(s)
Channelrhodopsins/química , Channelrhodopsins/metabolismo , Activación del Canal Iónico , Animales , Channelrhodopsins/ultraestructura , Microscopía por Crioelectrón , Femenino , Células HEK293 , Humanos , Masculino , Ratones Endogámicos C57BL , Modelos Moleculares , Optogenética , Filogenia , Ratas Sprague-Dawley , Bases de Schiff/química , Células Sf9 , Relación Estructura-Actividad
6.
Cell ; 184(14): 3731-3747.e21, 2021 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-34214470

RESUMEN

In motor neuroscience, state changes are hypothesized to time-lock neural assemblies coordinating complex movements, but evidence for this remains slender. We tested whether a discrete change from more autonomous to coherent spiking underlies skilled movement by imaging cerebellar Purkinje neuron complex spikes in mice making targeted forelimb-reaches. As mice learned the task, millimeter-scale spatiotemporally coherent spiking emerged ipsilateral to the reaching forelimb, and consistent neural synchronization became predictive of kinematic stereotypy. Before reach onset, spiking switched from more disordered to internally time-locked concerted spiking and silence. Optogenetic manipulations of cerebellar feedback to the inferior olive bi-directionally modulated neural synchronization and reaching direction. A simple model explained the reorganization of spiking during reaching as reflecting a discrete bifurcation in olivary network dynamics. These findings argue that to prepare learned movements, olivo-cerebellar circuits enter a self-regulated, synchronized state promoting motor coordination. State changes facilitating behavioral transitions may generalize across neural systems.


Asunto(s)
Movimiento/fisiología , Red Nerviosa/fisiología , Potenciales de Acción/fisiología , Animales , Calcio/metabolismo , Cerebelo/fisiología , Sincronización Cortical , Miembro Anterior/fisiología , Interneuronas/fisiología , Aprendizaje , Ratones Endogámicos C57BL , Ratones Transgénicos , Modelos Neurológicos , Actividad Motora/fisiología , Núcleo Olivar/fisiología , Optogenética , Células de Purkinje/fisiología , Conducta Estereotipada , Análisis y Desempeño de Tareas
7.
Cell ; 183(1): 211-227.e20, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32937106

RESUMEN

The striosome compartment within the dorsal striatum has been implicated in reinforcement learning and regulation of motivation, but how striosomal neurons contribute to these functions remains elusive. Here, we show that a genetically identified striosomal population, which expresses the Teashirt family zinc finger 1 (Tshz1) and belongs to the direct pathway, drives negative reinforcement and is essential for aversive learning in mice. Contrasting a "conventional" striosomal direct pathway, the Tshz1 neurons cause aversion, movement suppression, and negative reinforcement once activated, and they receive a distinct set of synaptic inputs. These neurons are predominantly excited by punishment rather than reward and represent the anticipation of punishment or the motivation for avoidance. Furthermore, inhibiting these neurons impairs punishment-based learning without affecting reward learning or movement. These results establish a major role of striosomal neurons in behaviors reinforced by punishment and moreover uncover functions of the direct pathway unaccounted for in classic models.


Asunto(s)
Reacción de Prevención/fisiología , Cuerpo Estriado/fisiología , Proteínas de Homeodominio/genética , Proteínas Represoras/genética , Animales , Ganglios Basales , Femenino , Proteínas de Homeodominio/metabolismo , Aprendizaje/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Motivación , Neuronas/fisiología , Castigo , Refuerzo en Psicología , Proteínas Represoras/metabolismo
8.
Cell ; 183(4): 918-934.e49, 2020 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-33113354

RESUMEN

Learning valence-based responses to favorable and unfavorable options requires judgments of the relative value of the options, a process necessary for species survival. We found, using engineered mice, that circuit connectivity and function of the striosome compartment of the striatum are critical for this type of learning. Calcium imaging during valence-based learning exhibited a selective correlation between learning and striosomal but not matrix signals. This striosomal activity encoded discrimination learning and was correlated with task engagement, which, in turn, could be regulated by chemogenetic excitation and inhibition. Striosomal function during discrimination learning was disturbed with aging and severely so in a mouse model of Huntington's disease. Anatomical and functional connectivity of parvalbumin-positive, putative fast-spiking interneurons (FSIs) to striatal projection neurons was enhanced in striosomes compared with matrix in mice that learned. Computational modeling of these findings suggests that FSIs can modulate the striosomal signal-to-noise ratio, crucial for discrimination and learning.


Asunto(s)
Envejecimiento/patología , Cuerpo Estriado/patología , Enfermedad de Huntington/patología , Aprendizaje , Potenciales de Acción , Animales , Conducta Animal , Biomarcadores/metabolismo , Cuerpo Estriado/fisiopatología , Aprendizaje Discriminativo , Modelos Animales de Enfermedad , Enfermedad de Huntington/fisiopatología , Interneuronas/patología , Ratones Transgénicos , Modelos Neurológicos , Red Nerviosa/fisiopatología , Parvalbúminas/metabolismo , Fotometría , Recompensa , Análisis y Desempeño de Tareas
10.
Cell ; 177(5): 1346-1360.e24, 2019 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-31080068

RESUMEN

To decipher dynamic brain information processing, current genetically encoded calcium indicators (GECIs) are limited in single action potential (AP) detection speed, combinatorial spectral compatibility, and two-photon imaging depth. To address this, here, we rationally engineered a next-generation quadricolor GECI suite, XCaMPs. Single AP detection was achieved within 3-10 ms of spike onset, enabling measurements of fast-spike trains in parvalbumin (PV)-positive interneurons in the barrel cortex in vivo and recording three distinct (two inhibitory and one excitatory) ensembles during pre-motion activity in freely moving mice. In vivo paired recording of pre- and postsynaptic firing revealed spatiotemporal constraints of dendritic inhibition in layer 1 in vivo, between axons of somatostatin (SST)-positive interneurons and apical tufts dendrites of excitatory pyramidal neurons. Finally, non-invasive, subcortical imaging using red XCaMP-R uncovered somatosensation-evoked persistent activity in hippocampal CA1 neurons. Thus, the XCaMPs offer a critical enhancement of solution space in studies of complex neuronal circuit dynamics. VIDEO ABSTRACT.


Asunto(s)
Potenciales de Acción/fisiología , Axones/metabolismo , Corteza Cerebral/metabolismo , Hipocampo/metabolismo , Interneuronas/metabolismo , Células Piramidales/metabolismo , Animales , Corteza Cerebral/citología , Femenino , Hipocampo/citología , Interneuronas/citología , Ratones , Ratones Transgénicos , Células Piramidales/citología , Ratas , Ratas Sprague-Dawley
11.
Cell ; 170(5): 1013-1027.e14, 2017 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-28823561

RESUMEN

Reward-seeking behavior is fundamental to survival, but suppression of this behavior can be essential as well, even for rewards of high value. In humans and rodents, the medial prefrontal cortex (mPFC) has been implicated in suppressing reward seeking; however, despite vital significance in health and disease, the neural circuitry through which mPFC regulates reward seeking remains incompletely understood. Here, we show that a specific subset of superficial mPFC projections to a subfield of nucleus accumbens (NAc) neurons naturally encodes the decision to initiate or suppress reward seeking when faced with risk of punishment. A highly resolved subpopulation of these top-down projecting neurons, identified by 2-photon Ca2+ imaging and activity-dependent labeling to recruit the relevant neurons, was found capable of suppressing reward seeking. This natural activity-resolved mPFC-to-NAc projection displayed unique molecular-genetic and microcircuit-level features concordant with a conserved role in the regulation of reward-seeking behavior, providing cellular and anatomical identifiers of behavioral and possible therapeutic significance.


Asunto(s)
Recompensa , Animales , Conducta Animal , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Vías Nerviosas , Neuroimagen , Corteza Prefrontal/citología , Corteza Prefrontal/metabolismo , Castigo
12.
Cell ; 165(7): 1776-1788, 2016 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-27238022

RESUMEN

A major challenge in understanding the cellular diversity of the brain has been linking activity during behavior with standard cellular typology. For example, it has not been possible to determine whether principal neurons in prefrontal cortex active during distinct experiences represent separable cell types, and it is not known whether these differentially active cells exert distinct causal influences on behavior. Here, we develop quantitative hydrogel-based technologies to connect activity in cells reporting on behavioral experience with measures for both brain-wide wiring and molecular phenotype. We find that positive and negative-valence experiences in prefrontal cortex are represented by cell populations that differ in their causal impact on behavior, long-range wiring, and gene expression profiles, with the major discriminant being expression of the adaptation-linked gene NPAS4. These findings illuminate cellular logic of prefrontal cortex information processing and natural adaptive behavior and may point the way to cell-type-specific understanding and treatment of disease-associated states.


Asunto(s)
Conducta Animal , Mapeo Encefálico/métodos , Corteza Prefrontal/citología , Animales , Conducta Apetitiva , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Cocaína/administración & dosificación , Electrochoque , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Corteza Prefrontal/metabolismo
13.
Cell ; 160(3): 516-27, 2015 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-25635459

RESUMEN

Optimally orchestrating complex behavioral states, such as the pursuit and consumption of food, is critical for an organism's survival. The lateral hypothalamus (LH) is a neuroanatomical region essential for appetitive and consummatory behaviors, but whether individual neurons within the LH differentially contribute to these interconnected processes is unknown. Here, we show that selective optogenetic stimulation of a molecularly defined subset of LH GABAergic (Vgat-expressing) neurons enhances both appetitive and consummatory behaviors, whereas genetic ablation of these neurons reduced these phenotypes. Furthermore, this targeted LH subpopulation is distinct from cells containing the feeding-related neuropeptides, melanin-concentrating hormone (MCH), and orexin (Orx). Employing in vivo calcium imaging in freely behaving mice to record activity dynamics from hundreds of cells, we identified individual LH GABAergic neurons that preferentially encode aspects of either appetitive or consummatory behaviors, but rarely both. These tightly regulated, yet highly intertwined, behavioral processes are thus dissociable at the cellular level.


Asunto(s)
Conducta Apetitiva , Conducta Consumatoria , Hipotálamo/fisiología , Animales , Hormonas Hipotalámicas/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Melaninas/metabolismo , Ratones , Motivación , Neuronas/metabolismo , Neuropéptidos/metabolismo , Orexinas , Hormonas Hipofisarias/metabolismo , Proteínas del Transporte Vesicular de Aminoácidos Inhibidores/metabolismo , Ácido gamma-Aminobutírico/metabolismo
14.
Nature ; 615(7951): 292-299, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36859543

RESUMEN

Emotional states influence bodily physiology, as exemplified in the top-down process by which anxiety causes faster beating of the heart1-3. However, whether an increased heart rate might itself induce anxiety or fear responses is unclear3-8. Physiological theories of emotion, proposed over a century ago, have considered that in general, there could be an important and even dominant flow of information from the body to the brain9. Here, to formally test this idea, we developed a noninvasive optogenetic pacemaker for precise, cell-type-specific control of cardiac rhythms of up to 900 beats per minute in freely moving mice, enabled by a wearable micro-LED harness and the systemic viral delivery of a potent pump-like channelrhodopsin. We found that optically evoked tachycardia potently enhanced anxiety-like behaviour, but crucially only in risky contexts, indicating that both central (brain) and peripheral (body) processes may be involved in the development of emotional states. To identify potential mechanisms, we used whole-brain activity screening and electrophysiology to find brain regions that were activated by imposed cardiac rhythms. We identified the posterior insular cortex as a potential mediator of bottom-up cardiac interoceptive processing, and found that optogenetic inhibition of this brain region attenuated the anxiety-like behaviour that was induced by optical cardiac pacing. Together, these findings reveal that cells of both the body and the brain must be considered together to understand the origins of emotional or affective states. More broadly, our results define a generalizable approach for noninvasive, temporally precise functional investigations of joint organism-wide interactions among targeted cells during behaviour.


Asunto(s)
Conducta Animal , Encéfalo , Emociones , Corazón , Animales , Ratones , Ansiedad/fisiopatología , Encéfalo/fisiología , Mapeo Encefálico , Emociones/fisiología , Corazón/fisiología , Conducta Animal/fisiología , Electrofisiología , Optogenética , Corteza Insular/fisiología , Frecuencia Cardíaca , Channelrhodopsins , Taquicardia/fisiopatología , Marcapaso Artificial
15.
Cell ; 147(3): 678-89, 2011 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-22019004

RESUMEN

Prevailing theory suggests that long-term memories are encoded via a two-phase process requiring early involvement of the hippocampus followed by the neocortex. Contextual fear memories in rodents rely on the hippocampus immediately following training but are unaffected by hippocampal lesions or pharmacological inhibition weeks later. With fast optogenetic methods, we examine the real-time contribution of hippocampal CA1 excitatory neurons to remote memory and find that contextual fear memory recall, even weeks after training, can be reversibly abolished by temporally precise optogenetic inhibition of CA1. When this inhibition is extended to match the typical time course of pharmacological inhibition, remote hippocampus dependence converts to hippocampus independence, suggesting that long-term memory retrieval normally depends on the hippocampus but can adaptively shift to alternate structures. Further revealing the plasticity of mechanisms required for memory recall, we confirm the remote-timescale importance of the anterior cingulate cortex (ACC) and implicate CA1 in ACC recruitment for remote recall.


Asunto(s)
Hipocampo/fisiología , Memoria a Largo Plazo , Animales , Miedo , Giro del Cíngulo/metabolismo , Hipocampo/citología , Humanos , Ratones , Ratones Endogámicos C57BL , Neuronas/citología , Neuronas/fisiología
16.
Cell ; 141(1): 154-165, 2010 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-20303157

RESUMEN

Optogenetic technologies employ light to control biological processes within targeted cells in vivo with high temporal precision. Here, we show that application of molecular trafficking principles can expand the optogenetic repertoire along several long-sought dimensions. Subcellular and transcellular trafficking strategies now permit (1) optical regulation at the far-red/infrared border and extension of optogenetic control across the entire visible spectrum, (2) increased potency of optical inhibition without increased light power requirement (nanoampere-scale chloride-mediated photocurrents that maintain the light sensitivity and reversible, step-like kinetic stability of earlier tools), and (3) generalizable strategies for targeting cells based not only on genetic identity, but also on morphology and tissue topology, to allow versatile targeting when promoters are not known or in genetically intractable organisms. Together, these results illustrate use of cell-biological principles to enable expansion of the versatile fast optogenetic technologies suitable for intact-systems biology and behavior.


Asunto(s)
Técnicas Genéticas , Luz , Animales , Células Cultivadas , Hipocampo/citología , Hipocampo/metabolismo , Humanos , Neuronas/metabolismo , Proteínas Opsoninas/genética , Proteínas Opsoninas/metabolismo , Ratas , Biología de Sistemas/métodos
17.
Nature ; 565(7741): 645-649, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30651638

RESUMEN

Categorically distinct basic drives (for example, for social versus feeding behaviour1-3) can exert potent influences on each other; such interactions are likely to have important adaptive consequences (such as appropriate regulation of feeding in the context of social hierarchies) and can become maladaptive (such as in clinical settings involving anorexia). It is known that neural systems regulating natural and adaptive caloric intake, and those regulating social behaviours, involve related circuitry4-7, but the causal circuit mechanisms of these drive adjudications are not clear. Here we investigate the causal role in behaviour of cellular-resolution experience-specific neuronal populations in the orbitofrontal cortex, a major reward-processing hub that contains diverse activity-specific neuronal populations that respond differentially to various aspects of caloric intake8-13 and social stimuli14,15. We coupled genetically encoded activity imaging with the development and application of methods for optogenetic control of multiple individually defined cells, to both optically monitor and manipulate the activity of many orbitofrontal cortex neurons at the single-cell level in real time during rewarding experiences (caloric consumption and social interaction). We identified distinct populations within the orbitofrontal cortex that selectively responded to either caloric rewards or social stimuli, and found that activity of individually specified naturally feeding-responsive neurons was causally linked to increased feeding behaviour; this effect was selective as, by contrast, single-cell resolution activation of naturally social-responsive neurons inhibited feeding, and activation of neurons responsive to neither feeding nor social stimuli did not alter feeding behaviour. These results reveal the presence of potent cellular-level subnetworks within the orbitofrontal cortex that can be precisely engaged to bidirectionally control feeding behaviours subject to, for example, social influences.


Asunto(s)
Conducta Alimentaria/fisiología , Vías Nerviosas/fisiología , Neuronas/citología , Neuronas/fisiología , Corteza Prefrontal/citología , Corteza Prefrontal/fisiología , Conducta Social , Animales , Condicionamiento Operante/fisiología , Ingestión de Energía , Masculino , Ratones , Ratones Endogámicos C57BL , Optogenética , Recompensa , Análisis de la Célula Individual
18.
Nature ; 561(7723): 343-348, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30158696

RESUMEN

The naturally occurring channelrhodopsin variant anion channelrhodopsin-1 (ACR1), discovered in the cryptophyte algae Guillardia theta, exhibits large light-gated anion conductance and high anion selectivity when expressed in heterologous settings, properties that support its use as an optogenetic tool to inhibit neuronal firing with light. However, molecular insight into ACR1 is lacking owing to the absence of structural information underlying light-gated anion conductance. Here we present the crystal structure of G. theta ACR1 at 2.9 Å resolution. The structure reveals unusual architectural features that span the extracellular domain, retinal-binding pocket, Schiff-base region, and anion-conduction pathway. Together with electrophysiological and spectroscopic analyses, these findings reveal the fundamental molecular basis of naturally occurring light-gated anion conductance, and provide a framework for designing the next generation of optogenetic tools.


Asunto(s)
Aniones/metabolismo , Channelrhodopsins/química , Channelrhodopsins/metabolismo , Criptófitas/química , Bacteriorodopsinas/química , Sitios de Unión , Channelrhodopsins/efectos de la radiación , Cristalografía por Rayos X , Conductividad Eléctrica , Activación del Canal Iónico/efectos de la radiación , Transporte Iónico/efectos de la radiación , Modelos Moleculares , Optogenética/métodos , Optogenética/tendencias , Retinaldehído/metabolismo , Bases de Schiff/química
19.
Nature ; 561(7723): 349-354, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30158697

RESUMEN

Both designed and natural anion-conducting channelrhodopsins (dACRs and nACRs, respectively) have been widely applied in optogenetics (enabling selective inhibition of target-cell activity during animal behaviour studies), but each class exhibits performance limitations, underscoring trade-offs in channel structure-function relationships. Therefore, molecular and structural insights into dACRs and nACRs will be critical not only for understanding the fundamental mechanisms of these light-gated anion channels, but also to create next-generation optogenetic tools. Here we report crystal structures of the dACR iC++, along with spectroscopic, electrophysiological and computational analyses that provide unexpected insights into pH dependence, substrate recognition, channel gating and ion selectivity of both dACRs and nACRs. These results enabled us to create an anion-conducting channelrhodopsin integrating the key features of large photocurrent and fast kinetics alongside exclusive anion selectivity.


Asunto(s)
Aniones/metabolismo , Channelrhodopsins/química , Channelrhodopsins/metabolismo , Activación del Canal Iónico , Optogenética/métodos , Animales , Caenorhabditis elegans , Células Cultivadas , Channelrhodopsins/genética , Channelrhodopsins/efectos de la radiación , Cristalografía por Rayos X , Electrofisiología , Femenino , Células HEK293 , Hipocampo/citología , Humanos , Concentración de Iones de Hidrógeno , Activación del Canal Iónico/efectos de la radiación , Transporte Iónico/efectos de la radiación , Cinética , Masculino , Ratones , Modelos Moleculares , Neuronas/metabolismo , Especificidad por Sustrato
20.
Proc Natl Acad Sci U S A ; 118(44)2021 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-34702737

RESUMEN

Neurons in the central nervous system (CNS) are distinguished by the neurotransmitter types they release, their synaptic connections, morphology, and genetic profiles. To fully understand how the CNS works, it is critical to identify all neuronal classes and reveal their synaptic connections. The retina has been extensively used to study neuronal development and circuit formation. Here, we describe a previously unidentified interneuron in mammalian retina. This interneuron shares some morphological, physiological, and molecular features with retinal bipolar cells, such as receiving input from photoreceptors and relaying visual signals to retinal ganglion cells. It also shares some features with amacrine cells (ACs), particularly Aii-ACs, such as their neurite morphology in the inner plexiform layer, the expression of some AC-specific markers, and possibly the release of the inhibitory neurotransmitter glycine. Thus, we unveil an uncommon interneuron, which may play an atypical role in vision.


Asunto(s)
Interneuronas/citología , Retina/citología , Visión Ocular/fisiología , Animales , Evolución Biológica , Callithrix , Interneuronas/fisiología , Macaca , Ratones Endogámicos C57BL , Ratones Transgénicos , Retina/fisiología , Coloración y Etiquetado/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA