Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nano Lett ; 20(11): 7882-7888, 2020 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-33108202

RESUMEN

The advanced nanoscale integration available in CMOS technology provides a key motivation for its use in spin-based quantum computing applications. Initial demonstrations of quantum dot formation and spin blockade in CMOS foundry-compatible devices are encouraging, but results are yet to match the control of individual electrons demonstrated in university-fabricated multigate designs. We show that quantum dots formed in a CMOS nanowire device can be measured with a remote single electron transistor (SET) formed in an adjacent nanowire, via floating coupling gates. By biasing the SET nanowire with respect to the nanowire hosting the quantum dots, we controllably form ancillary quantum dots under the floating gates, thus enabling control of all quantum dots in a 2 × 2 array, and charge sensing down to the last electron in each dot. We use effective mass theory to investigate the ideal geometrical parameters in order to achieve interdot tunnel rates required for spin-based quantum computation.

2.
Nat Nanotechnol ; 18(7): 741-746, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36879125

RESUMEN

Spins in semiconductor quantum dots constitute a promising platform for scalable quantum information processing. Coupling them strongly to the photonic modes of superconducting microwave resonators would enable fast non-demolition readout and long-range, on-chip connectivity, well beyond nearest-neighbour quantum interactions. Here we demonstrate strong coupling between a microwave photon in a superconducting resonator and a hole spin in a silicon-based double quantum dot issued from a foundry-compatible metal-oxide-semiconductor fabrication process. By leveraging the strong spin-orbit interaction intrinsically present in the valence band of silicon, we achieve a spin-photon coupling rate as high as 330 MHz, largely exceeding the combined spin-photon decoherence rate. This result, together with the recently demonstrated long coherence of hole spins in silicon, opens a new realistic pathway to the development of circuit quantum electrodynamics with spins in semiconductor quantum dots.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA