Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Sensors (Basel) ; 23(8)2023 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-37112518

RESUMEN

Grain yield (GY) prediction based on non-destructive UAV-based spectral sensing could make screening of large field trials more efficient and objective. However, the transfer of models remains challenging, and is affected by location, year-dependent weather conditions and measurement dates. Therefore, this study evaluates GY modelling across years and locations, considering the effect of measurement dates within years. Based on a previous study, we used a normalized difference red edge (NDRE1) index with PLS (partial least squares) regression, trained and tested with the data of individual dates and date combinations, respectively. While strong differences in model performance were observed between test datasets, i.e., different trials, as well as between measurement dates, the effect of the train datasets was comparably small. Generally, within-trials models achieved better predictions (max. R2 = 0.27-0.81), but R2-values for the best across-trials models were lower only by 0.03-0.13. Within train and test datasets, measurement dates had a strong influence on model performance. While measurements during flowering and early milk ripeness were confirmed for within- and across-trials models, later dates were less useful for across-trials models. For most test sets, multi-date models revealed to improve predictions compared to individual-date models.


Asunto(s)
Fitomejoramiento , Triticum , Animales , Grano Comestible , Análisis de los Mínimos Cuadrados , Leche
2.
Plant Phenomics ; 5: 0068, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37456082

RESUMEN

Fusarium head blight (FHB) is one of the most prevalent wheat diseases, causing substantial yield losses and health risks. Efficient phenotyping of FHB is crucial for accelerating resistance breeding, but currently used methods are time-consuming and expensive. The present article suggests a noninvasive classification model for FHB severity estimation using red-green-blue (RGB) images, without requiring extensive preprocessing. The model accepts images taken from consumer-grade, low-cost RGB cameras and classifies the FHB severity into 6 ordinal levels. In addition, we introduce a novel dataset consisting of around 3,000 images from 3 different years (2020, 2021, and 2022) and 2 FHB severity assessments per image from independent raters. We used a pretrained EfficientNet (size b0), redesigned as a regression model. The results demonstrate that the interrater reliability (Cohen's kappa, κ) is substantially lower than the achieved individual network-to-rater results, e.g., 0.68 and 0.76 for the data captured in 2020, respectively. The model shows a generalization effect when trained with data from multiple years and tested on data from an independent year. Thus, using the images from 2020 and 2021 for training and 2022 for testing, we improved the F1w score by 0.14, the accuracy by 0.11, κ by 0.12, and reduced the root mean squared error by 0.5 compared to the best network trained only on a single year's data. The proposed lightweight model and methods could be deployed on mobile devices to automatically and objectively assess FHB severity with images from low-cost RGB cameras. The source code and the dataset are available at https://github.com/cvims/FHB_classification.

3.
Sci Adv ; 7(24)2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34117061

RESUMEN

The potential of big data to support businesses has been demonstrated in financial services, manufacturing, and telecommunications. Here, we report on efforts to enter a new data era in plant breeding by collecting genomic and phenotypic information from 12,858 wheat genotypes representing 6575 single-cross hybrids and 6283 inbred lines that were evaluated in six experimental series for yield in field trials encompassing ~125,000 plots. Integrating data resulted in twofold higher prediction ability compared with cases in which hybrid performance was predicted across individual experimental series. Our results suggest that combining data across breeding programs is a particularly appropriate strategy to exploit the potential of big data for predictive plant breeding. This paradigm shift can contribute to increasing yield and resilience, which is needed to feed the growing world population.

4.
Sci Adv ; 6(24): eaay4897, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32582844

RESUMEN

The genetics underlying heterosis, the difference in performance of crosses compared with midparents, is hypothesized to vary with relatedness between parents. We established a unique germplasm comprising three hybrid wheat sets differing in the degree of divergence between parents and devised a genetic distance measure giving weight to heterotic loci. Heterosis increased steadily with heterotic genetic distance for all 1903 hybrids. Midparent heterosis, however, was significantly lower in the hybrids including crosses between elite and exotic lines than in crosses among elite lines. The analysis of the genetic architecture of heterosis revealed this to be caused by a higher portion of negative dominance and dominance-by-dominance epistatic effects. Collectively, these results expand our understanding of heterosis in crops, an important pillar toward global food security.

5.
J Appl Genet ; 56(3): 277-85, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25924791

RESUMEN

Global wheat production will benefit from cultivars showing genetic resistance to preharvest sprouting (PHS). Working on PHS resistance is still challenging due to the lack of simple protocols for the provocation of symptoms for appropriate trait differentiation under highly variable environmental conditions. Therefore, the availability of molecular markers for enhancing PHS resistance in breeding lines is of utmost importance. Genome-wide association mapping was performed to unravel the genetics of PHS resistance in a diversity panel of 124 winter wheat genotypes using both random and targeted marker locus approaches. Data for grain germination tests, spike wetting treatments, and field sprouting damage measurements of grains were collected in 11, 12, and four environments, respectively. Twenty-two quantitative trait loci (QTL) linked with 40 markers were detected for the three traits commonly used for assessing the PHS resistance of cultivars. All but five QTL on chromosomes 1B, 1D (two QTL), 3D, and 5D showed locations similar to previous studies, including prominent QTL on chromosomes 2BS, 3AS, and 4AL. The highest retrieval rate across environments was found for QTL on chromosomes 1D, 2BS, 3D, 4AL, and 7B. The study identified genomic signatures useful for marker-assisted improvement of PHS resistance not only in European breeding programs, but of global significance.


Asunto(s)
Mapeo Cromosómico , Germinación/genética , Sitios de Carácter Cuantitativo , Triticum/genética , Estudios de Asociación Genética , Marcadores Genéticos , Genotipo , Fenotipo , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA