Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Plant Cell ; 31(7): 1506-1519, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31076539

RESUMEN

The pleiotropic and complex gibberellin (GA) response relies on targeted proteolysis of DELLA proteins mediated by a GA-activated GIBBERELLIN-INSENSITIVE DWARF1 (GID1) receptor. The tomato (Solanum lycopersicum) genome encodes for a single DELLA protein, PROCERA (PRO), and three receptors, SlGID1a (GID1a), GID1b1, and GID1b2, that may guide specific GA responses. In this work, clustered regularly interspaced short palindromic repeats (CRISPR) /CRISPR associated protein 9-derived gid1 mutants were generated and their effect on GA responses was studied. The gid1 triple mutant was extremely dwarf and fully insensitive to GA. Under optimal growth conditions, the three receptors function redundantly and the single gid1 mutants exhibited very mild phenotypic changes. Among the three receptors, GID1a had the strongest effects on germination and growth. Yeast two-hybrid assays suggested that GID1a has the highest affinity to PRO. Analysis of lines with a single active receptor demonstrated a unique role for GID1a in protracted response to GA that was saturated only at high doses. When the gid1 mutants were grown in the field under ambient changing environments, they showed phenotypic instability, the high redundancy was lost, and gid1a exhibited dwarfism that was strongly exacerbated by the loss of another GID1b receptor gene. These results suggest that multiple GA receptors contribute to phenotypic stability under environmental extremes.


Asunto(s)
Ambiente , Giberelinas/metabolismo , Proteínas de Plantas/metabolismo , Receptores de Superficie Celular/metabolismo , Solanum lycopersicum/metabolismo , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Mutación/genética , Fenotipo , Desarrollo de la Planta , Proteínas de Plantas/genética , Tallos de la Planta/crecimiento & desarrollo
2.
J Exp Bot ; 71(12): 3603-3612, 2020 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-32173726

RESUMEN

Low gibberellin (GA) activity in tomato (Solanum lycopersicum) inhibits leaf expansion and reduces stomatal conductance. This leads to lower transpiration and improved water status under transient drought conditions. Tomato has three GIBBERELLIN-INSENSITIVE DWARF1 (GID1) GA receptors with overlapping activities and high redundancy. We tested whether mutation in a single GID1 reduces transpiration without affecting growth and productivity. CRISPR-Cas9 gid1 mutants were able to maintain higher leaf water content under water-deficit conditions. Moreover, while gid1a exhibited normal growth, it showed reduced whole-plant transpiration and better recovery from dehydration. Mutation in GID1a inhibited xylem vessel proliferation, which led to lower hydraulic conductance. In stronger GA mutants, we also found reduced xylem vessel expansion. These results suggest that low GA activity affects transpiration by multiple mechanisms: it reduces leaf area, promotes stomatal closure, and reduces xylem proliferation and expansion, and as a result, xylem hydraulic conductance. We further examined if gid1a performs better than the control M82 in the field. Under these conditions, the high redundancy of GID1s was lost and gid1a plants were semi-dwarf, but their productivity was not affected. Although gid1a did not perform better under drought conditions in the field, it exhibited a higher harvest index.


Asunto(s)
Solanum lycopersicum , Proliferación Celular , Giberelinas , Solanum lycopersicum/genética , Mutación , Hojas de la Planta , Estomas de Plantas/genética , Transpiración de Plantas , Agua , Xilema/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA