Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Am J Hum Genet ; 108(6): 1083-1094, 2021 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-34022131

RESUMEN

Clinical genetic testing of protein-coding regions identifies a likely causative variant in only around half of developmental disorder (DD) cases. The contribution of regulatory variation in non-coding regions to rare disease, including DD, remains very poorly understood. We screened 9,858 probands from the Deciphering Developmental Disorders (DDD) study for de novo mutations in the 5' untranslated regions (5' UTRs) of genes within which variants have previously been shown to cause DD through a dominant haploinsufficient mechanism. We identified four single-nucleotide variants and two copy-number variants upstream of MEF2C in a total of ten individual probands. We developed multiple bespoke and orthogonal experimental approaches to demonstrate that these variants cause DD through three distinct loss-of-function mechanisms, disrupting transcription, translation, and/or protein function. These non-coding region variants represent 23% of likely diagnoses identified in MEF2C in the DDD cohort, but these would all be missed in standard clinical genetics approaches. Nonetheless, these variants are readily detectable in exome sequence data, with 30.7% of 5' UTR bases across all genes well covered in the DDD dataset. Our analyses show that non-coding variants upstream of genes within which coding variants are known to cause DD are an important cause of severe disease and demonstrate that analyzing 5' UTRs can increase diagnostic yield. We also show how non-coding variants can help inform both the disease-causing mechanism underlying protein-coding variants and dosage tolerance of the gene.


Asunto(s)
Regiones no Traducidas 5' , Discapacidades del Desarrollo/etiología , Predisposición Genética a la Enfermedad , Mutación con Pérdida de Función , Niño , Estudios de Cohortes , Variaciones en el Número de Copia de ADN , Discapacidades del Desarrollo/patología , Humanos , Factores de Transcripción MEF2/genética , Secuenciación del Exoma
2.
Adv Exp Med Biol ; 1396: 115-127, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36454463

RESUMEN

Inherited arrhythmic disorders are a group of heterogeneous diseases predisposing to life-threatening arrhythmias and sudden cardiac death. Their diagnosis is not always simple due to incomplete penetrance and genetic heterogeneity. Furthermore, the available treatments are usually invasive and merely preventive. Genome editing and especially CRISPR/Cas9 technologies have the potential to correct the genetic arrhythmogenic substrate, thereby offering a cure for these fatal diseases. To date, genome editing has allowed reproducing cardiac arrhythmias in vitro, providing a robust platform for variant pathogenicity, mechanistic, and drug-testing studies. However, in vivo approaches still need profound research regarding safety, specificity, and efficiency of the methods.


Asunto(s)
Arritmias Cardíacas , Edición Génica , Humanos , Arritmias Cardíacas/genética , Arritmias Cardíacas/terapia , Muerte Súbita Cardíaca/prevención & control , Tecnología
3.
Circ Res ; 125(2): 170-183, 2019 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-31145021

RESUMEN

RATIONALE: RBPs (RNA binding proteins) play critical roles in the cell by regulating mRNA transport, splicing, editing, and stability. The RBP SRSF3 (serine/arginine-rich splicing factor 3) is essential for blastocyst formation and for proper liver development and function. However, its role in the heart has not been explored. OBJECTIVE: To investigate the role of SRSF3 in cardiac function. METHODS AND RESULTS: Cardiac SRSF3 expression was high at mid gestation and decreased during late embryonic development. Mice lacking SRSF3 in the embryonic heart showed impaired cardiomyocyte proliferation and died in utero. In the adult heart, SRSF3 expression was reduced after myocardial infarction, suggesting a possible role in cardiac homeostasis. To determine the role of this RBP in the adult heart, we used an inducible, cardiomyocyte-specific SRSF3 knockout mouse model. After SRSF3 depletion in cardiomyocytes, mice developed severe systolic dysfunction that resulted in death within 8 days. RNA-Seq analysis revealed downregulation of mRNAs encoding sarcomeric and calcium handling proteins. Cardiomyocyte-specific SRSF3 knockout mice also showed evidence of alternative splicing of mTOR (mammalian target of rapamycin) mRNA, generating a shorter protein isoform lacking catalytic activity. This was associated with decreased phosphorylation of 4E-BP1 (eIF4E-binding protein 1), a protein that binds to eIF4E (eukaryotic translation initiation factor 4E) and prevents mRNA decapping. Consequently, we found increased decapping of mRNAs encoding proteins involved in cardiac contraction. Decapping was partially reversed by mTOR activation. CONCLUSIONS: We show that cardiomyocyte-specific loss of SRSF3 expression results in decapping of critical mRNAs involved in cardiac contraction. The molecular mechanism underlying this effect likely involves the generation of a short mTOR isoform by alternative splicing, resulting in reduced 4E-BP1 phosphorylation. The identification of mRNA decapping as a mechanism of systolic heart failure may open the way to the development of urgently needed therapeutic tools.


Asunto(s)
Miocitos Cardíacos/metabolismo , Factores de Empalme Serina-Arginina/genética , Disfunción Ventricular/genética , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Miocitos Cardíacos/fisiología , Procesamiento Postranscripcional del ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , Factores de Empalme Serina-Arginina/metabolismo , Sístole , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo , Disfunción Ventricular/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA