Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Hepatology ; 69(6): 2562-2578, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30723922

RESUMEN

Cholangiopathies are diseases that affect cholangiocytes, the cells lining the biliary tract. Liver stem cells (LSCs) are able to differentiate into all cells of the liver and possibly influence the surrounding liver tissue by secretion of signaling molecules. One way in which cells can interact is through secretion of extracellular vesicles (EVs), which are small membrane-bound vesicles that contain proteins, microRNAs (miRNAs), and cytokines. We evaluated the contents of liver stem cell-derived EVs (LSCEVs), compared their miRNA contents to those of EVs isolated from hepatocytes, and evaluated the downstream targets of these miRNAs. We finally evaluated the crosstalk among LSCs, cholangiocytes, and human hepatic stellate cells (HSCs). We showed that LSCEVs were able to reduce ductular reaction and biliary fibrosis in multidrug resistance protein 2 (MDR2)-/- mice. Additionally, we showed that cholangiocyte growth was reduced and HSCs were deactivated in LSCEV-treated mice. Evaluation of LSCEV contents compared with EVs derived from hepatocytes showed a large increase in the miRNA, lethal-7 (let-7). Further evaluation of let-7 in MDR2-/- mice and human primary sclerosing cholangitis samples showed reduced levels of let-7 compared with controls. In liver tissues and isolated cholangiocytes, downstream targets of let-7 (identified by ingenuity pathway analysis), Lin28a (Lin28 homolog A), Lin28b (Lin28 homolog B), IL-13 (interleukin 13), NR1H4 (nuclear receptor subfamily 1 group H member 4) and NF-κB (nuclear factor kappa B), are elevated in MDR2-/- mice, but treatment with LSCEVs reduced levels of these mediators of ductular reaction and biliary fibrosis through the inhibition of NF-κB and IL-13 signaling pathways. Evaluation of crosstalk using cholangiocyte supernatants from LSCEV-treated cells on cultured HSCs showed that HSCs had reduced levels of fibrosis and increased senescence. Conclusion: Our studies indicate that LSCEVs could be a possible treatment for cholangiopathies or could be used for target validation for future therapies.


Asunto(s)
Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Diferenciación Celular/fisiología , Hepatocitos/citología , Cirrosis Hepática/metabolismo , MicroARNs/metabolismo , Células Madre/citología , Animales , Células Cultivadas/citología , Células Cultivadas/metabolismo , Colangitis Esclerosante/metabolismo , Colangitis Esclerosante/patología , Modelos Animales de Enfermedad , Femenino , Hepatocitos/fisiología , Humanos , Cirrosis Hepática/patología , Ratones , Ratones Noqueados , Distribución Aleatoria , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Factores de Riesgo , Sensibilidad y Especificidad , Miembro 4 de la Subfamilia B de Casete de Unión a ATP
2.
J Biol Chem ; 292(27): 11336-11347, 2017 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-28536261

RESUMEN

The let-7/Lin28 axis is associated with the regulation of key cellular regulatory genes known as microRNAs in various human disorders and cancer development. This study evaluated the role of the let-7/Lin28 axis in regulating a mesenchymal phenotype of hepatic stellate cells in alcoholic liver injury. We identified that ethanol feeding significantly down-regulated several members of the let-7 family in mouse liver, including let-7a and let-7b. Similarly, the treatment of human hepatic stellate cells (HSCs) with lipopolysaccharide (LPS) and transforming growth factor-ß (TGF-ß) significantly decreased the expressions of let-7a and let-7b. Conversely, overexpression of let-7a and let-7b suppressed the myofibroblastic activation of cultured human HSCs induced by LPS and TGF-ß, as evidenced by repressed ACTA2 (α-actin 2), COL1A1 (collagen 1A1), TIMP1 (TIMP metallopeptidase inhibitor 1), and FN1 (fibronectin 1); this supports the notion that HSC activation is controlled by let-7. A combination of bioinformatics, dual-luciferase reporter assay, and Western blot analysis revealed that Lin28B and high-mobility group AT-hook (HMGA2) were the direct targets of let-7a and let-7b. Furthermore, Lin28B deficiency increased the expression of let-7a/let-7b as well as reduced HSC activation and liver fibrosis in mice with alcoholic liver injury. This feedback regulation of let-7 by Lin28B is verified in hepatic stellate cells isolated by laser capture microdissection from the model. The identification of the let-7/Lin28 axis as an important regulator of HSC activation as well as its upstream modulators and down-stream targets will provide insights into the involvement of altered microRNA expression in contributing to the pathogenesis of alcoholic liver fibrosis and novel therapeutic approaches for human alcoholic liver diseases.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Células Estrelladas Hepáticas/metabolismo , Hepatopatías Alcohólicas/metabolismo , Hígado/metabolismo , MicroARNs/metabolismo , Proteínas de Unión al ARN/metabolismo , Transducción de Señal , Actinas/genética , Actinas/metabolismo , Animales , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Cadena alfa 1 del Colágeno Tipo I , Proteínas de Unión al ADN/genética , Células Estrelladas Hepáticas/patología , Humanos , Lipopolisacáridos/toxicidad , Hígado/patología , Hepatopatías Alcohólicas/genética , Hepatopatías Alcohólicas/patología , Ratones , MicroARNs/genética , Proteínas de Unión al ARN/genética , Factor de Crecimiento Transformador beta/farmacología
3.
Am J Physiol Gastrointest Liver Physiol ; 315(3): G385-G398, 2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-29848019

RESUMEN

microRNA-21 (miRNA) is one of the most abundant miRNAs in chronic liver injuries including alcoholic liver injury. Previous studies have demonstrated that miR-21 plays a role in inflammation in the liver and functions in hepatic stellate cells (HSCs), which reside in the perisinusoidal space between sinusoidal endothelial cells and hepatocytes and regulate sinusoidal circulation. HSCs integrate cytokine-mediated inflammatory responses in the sinusoids and relay them to the liver parenchyma. Here, we showed that the activation of Von Hippel-Lindau (VHL) expression, by miR-21 knockout in vivo and anti-miR-21 or VHL overexpression in vitro, suppressed the production of proinflammatory cytokines, such as interleukin (IL)-6, monocyte chemoattractant protein-1, and IL-1ß, in human HSCs during alcoholic liver injury. Sequence and functional analyses confirmed that miR-21 directly targeted the 3'-untranslated region of VHL. Immunofluorescence and real-time PCR analysis revealed that miR-21 depletion blocked NF-κB activation in human HSCs both in cultured HSCs as well as HSCs isolated from alcohol-related liver disease mice liver by laser capture microdissection. We also showed that conditioned medium from anti-miR-21-transfected HSCs suppressed human monocyte-derived THP-1 cell migration. Taken together, our study indicates that depletion of miR-21 may downregulate cytokine production in HSCs and macrophage chemotaxis during alcoholic liver injury and that the targeting of miR-21 may have therapeutic potential for preventing the progression of alcoholic liver diseases. NEW & NOTEWORTHY This study demonstrates that silencing microRNA-21 can inhibit cytokine production and inflammatory responses in human hepatic stellate cells during alcoholic liver injury and that the targeting of microR-21 in hepatic stellate cells may have therapeutic potential for prevention and treatment of alcoholic liver diseases.


Asunto(s)
Citocinas , Células Estrelladas Hepáticas/metabolismo , Hepatitis Alcohólica , Cirrosis Hepática/metabolismo , Hígado/metabolismo , MicroARNs , Animales , Células Cultivadas , Citocinas/biosíntesis , Citocinas/metabolismo , Regulación hacia Abajo , Regulación de la Expresión Génica , Hepatitis Alcohólica/complicaciones , Hepatitis Alcohólica/metabolismo , Humanos , Inflamación/metabolismo , Cirrosis Hepática/etiología , Ratones , Ratones Noqueados , MicroARNs/genética , MicroARNs/metabolismo , Transducción de Señal
4.
Am J Pathol ; 187(12): 2788-2798, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29128099

RESUMEN

Alcoholic liver disease remains a major cause of liver-related morbidity and mortality, which ranges from alcoholic steatohepatitis to fibrosis/cirrhosis and hepatocellular carcinoma, and the related mechanisms are understood poorly. In this study, we aimed to investigate the role of miR-34a in alcohol-induced cellular senescence and liver fibrosis. We found that hepatic miR-34a expression was upregulated in ethanol-fed mice and heavy drinkers with steatohepatitis compared with respective controls. Mice treated with miR-34a Vivo-Morpholino developed less severe liver fibrosis than wild-type mice after 5 weeks of ethanol feeding. Further mechanism exploration showed that inhibition of miR-34a increased cellular senescence of hepatic stellate cells (HSCs) in ethanol-fed mice, although it decreased senescence in total liver and hepatocytes, which was verified by the changes of senescence-associated ß-galactosidase and gene expression. Furthermore, enhanced cellular senescence was observed in liver tissues from steatohepatitis patients compared with healthy controls. In addition, the expression of transforming growth factor-ß1, drosophila mothers against decapentaplegic protein 2 (Smad2), and Smad3 was decreased after inhibition of miR-34a in ethanol-fed mice. Our in vitro experiments showed that silencing of miR-34a partially blocked activation of HSCs by lipopolysaccharide and enhanced senescence of HSCs. Furthermore, inhibition of miR-34a decreased lipopolysaccharide-induced fibrotic gene expression in cultured hepatocytes. In conclusion, our data suggest that miR-34a functions as a profibrotic factor that promotes alcohol-induced liver fibrosis by reducing HSC senescence and increasing the senescence of hepatocytes.


Asunto(s)
Senescencia Celular/genética , Células Estrelladas Hepáticas/patología , Hepatocitos/patología , Cirrosis Hepática/patología , Hepatopatías Alcohólicas/patología , MicroARNs/metabolismo , Animales , Humanos , Cirrosis Hepática/etiología , Cirrosis Hepática/genética , Hepatopatías Alcohólicas/complicaciones , Hepatopatías Alcohólicas/genética , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA