RESUMEN
Microenvironmental factors are known fundamental regulators of the phenotype and aggressiveness of glioblastoma (GBM), the most lethal brain tumor, characterized by fast progression and marked resistance to treatments. In this context, the extracellular matrix (ECM) is known to heavily influence the behavior of cancer cells from several origins, contributing to stem cell niches, influencing tumor invasiveness and response to chemotherapy, mediating survival signaling cascades, and modulating inflammatory cell recruitment. Here, we show that collagen VI (COL6), an ECM protein widely expressed in both normal and pathological tissues, has a distinctive distribution within the GBM mass, strongly correlated with the most aggressive and phenotypically immature cells. Our data demonstrate that COL6 sustains the stem-like properties of GBM cells and supports the maintenance of an aggressive transcriptional program promoting cancer cell proliferation and survival. In particular, we identified a specific subset of COL6-transcriptionally co-regulated genes, required for the response of cells to replicative stress and DNA damage, supporting the concept that COL6 is an essential stimulus for the activation of GBM cell response and resistance to chemotherapy, through the ATM/ATR axis. Altogether, these findings indicate that COL6 plays a pivotal role in GBM tumor biology, exerting a pleiotropic action across different GBM hallmarks, including phenotypic identity and gene transcription, as well as response to treatments, thus providing valuable information for the understanding of the complex microenvironmental cues underlying GBM malignancy.
Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/tratamiento farmacológico , Glioblastoma/genética , Glioblastoma/metabolismo , Colágeno/metabolismo , Transducción de Señal , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Línea Celular Tumoral , Células Madre Neoplásicas/metabolismoRESUMEN
In the last few years, pulsed electric fields have emerged as promising clinical tools for tumor treatments. This study highlights the distinct impact of a specific pulsed electric field protocol, PEF-5 (0.3 MV/m, 40 µs, 5 pulses), on astrocytes (NHA) and medulloblastoma (D283) and glioblastoma (U87 NS) cancer stem-like cells (CSCs). We pursued this goal by performing ultrastructural analyses corroborated by molecular/omics approaches to understand the vulnerability or resistance mechanisms triggered by PEF-5 exposure in the different cell types. Electron microscopic analyses showed that, independently of exposed cells, the main targets of PEF-5 were the cell membrane and the cytoskeleton, causing membrane filopodium-like protrusion disappearance on the cell surface, here observed for the first time, accompanied by rapid cell swelling. PEF-5 induced different modifications in cell mitochondria. A complete mitochondrial dysfunction was demonstrated in D283, while a mild or negligible perturbation was observed in mitochondria of U87 NS cells and NHAs, respectively, not sufficient to impair their cell functions. Altogether, these results suggest the possibility of using PEF-based technology as a novel strategy to target selectively mitochondria of brain CSCs, preserving healthy cells.
Asunto(s)
Mitocondrias , Neoplasias , Mitocondrias/metabolismo , Membrana Celular/metabolismo , Electricidad , Citoesqueleto/metabolismo , Encéfalo/metabolismo , Neoplasias/metabolismoRESUMEN
Glioblastoma multiforme (GBM) is the most common brain cancer in adults. GBM starts from a small fraction of poorly differentiated and aggressive cancer stem cells (CSCs) responsible for aberrant proliferation and invasion. Due to extreme tumor heterogeneity, actual therapies provide poor positive outcomes, and cancers usually recur. Therefore, alternative approaches, possibly targeting CSCs, are necessary against GBM. Among emerging therapies, high intensity ultra-short pulsed electric fields (PEFs) are considered extremely promising and our previous results demonstrated the ability of a specific electric pulse protocol to selectively affect medulloblastoma CSCs preserving normal cells. Here, we tested the same exposure protocol to investigate the response of U87 GBM cells and U87-derived neurospheres. By analyzing different in vitro biological endpoints and taking advantage of transcriptomic and bioinformatics analyses, we found that, independent of CSC content, PEF exposure affected cell proliferation and differentially regulated hypoxia, inflammation and P53/cell cycle checkpoints. PEF exposure also significantly reduced the ability to form new neurospheres and inhibited the invasion potential. Importantly, exclusively in U87 neurospheres, PEF exposure changed the expression of stem-ness/differentiation genes. Our results confirm this physical stimulus as a promising treatment to destabilize GBM, opening up the possibility of developing effective PEF-mediated therapies.
Asunto(s)
Neoplasias Encefálicas , Neoplasias Cerebelosas , Glioblastoma , Adulto , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Neoplasias Cerebelosas/patología , Glioblastoma/metabolismo , Humanos , Recurrencia Local de Neoplasia/patología , Células Madre Neoplásicas/metabolismoRESUMEN
BACKGROUND: Despite chemotherapy intensification, a subgroup of high-risk paediatric T-cell acute lymphoblastic leukemia (T-ALL) patients still experience treatment failure. In this context, we hypothesised that therapy resistance in T-ALL might involve aldo-keto reductase 1C (AKR1C) enzymes as previously reported for solid tumors. METHODS: Expression of NRF2-AKR1C signaling components has been analysed in paediatric T-ALL samples endowed with different treatment outcomes as well as in patient-derived xenografts of T-ALL. The effects of AKR1C enzyme modulation has been investigated in T-ALL cell lines and primary cultures by combining AKR1C inhibition, overexpression, and gene silencing approaches. RESULTS: We show that T-ALL cells overexpress AKR1C1-3 enzymes in therapy-resistant patients. We report that AKR1C1-3 enzymes play a role in the response to vincristine (VCR) treatment, also ex vivo in patient-derived xenografts. Moreover, we demonstrate that the modulation of AKR1C1-3 levels is sufficient to sensitise T-ALL cells to VCR. Finally, we show that T-ALL chemotherapeutics induce overactivation of AKR1C enzymes independent of therapy resistance, thus establishing a potential resistance loop during T-ALL combination treatment. CONCLUSIONS: Here, we demonstrate that expression and activity of AKR1C enzymes correlate with response to chemotherapeutics in T-ALL, posing AKR1C1-3 as potential targets for combination treatments during T-ALL therapy.
Asunto(s)
Aldo-Ceto Reductasas/fisiología , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Resistencia a Antineoplásicos/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamiento farmacológico , 20-Hidroxiesteroide Deshidrogenasas/antagonistas & inhibidores , 20-Hidroxiesteroide Deshidrogenasas/fisiología , Edad de Inicio , Miembro C3 de la Familia 1 de las Aldo-Ceto Reductasas/antagonistas & inhibidores , Miembro C3 de la Familia 1 de las Aldo-Ceto Reductasas/fisiología , Aldo-Ceto Reductasas/antagonistas & inhibidores , Animales , Niño , Resistencia a Antineoplásicos/efectos de los fármacos , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Regulación Leucémica de la Expresión Génica/efectos de los fármacos , Humanos , Hidroxiesteroide Deshidrogenasas/antagonistas & inhibidores , Hidroxiesteroide Deshidrogenasas/fisiología , Isoenzimas/fisiología , Acetato de Medroxiprogesterona/administración & dosificación , Ratones , Ratones Endogámicos NOD , Ratones SCID , Oxidorreductasas/antagonistas & inhibidores , Oxidorreductasas/fisiología , Leucemia-Linfoma Linfoblástico de Células T Precursoras/epidemiología , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patología , Células Tumorales Cultivadas , Vincristina/administración & dosificación , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
The molecular determinants of malignant cell behaviours in breast cancer remain only partially understood. Here we show that SHARP1 (also known as BHLHE41 or DEC2) is a crucial regulator of the invasive and metastatic phenotype in triple-negative breast cancer (TNBC), one of the most aggressive types of breast cancer. SHARP1 is regulated by the p63 metastasis suppressor and inhibits TNBC aggressiveness through inhibition of hypoxia-inducible factor 1α (HIF-1α) and HIF-2α (HIFs). SHARP1 opposes HIF-dependent TNBC cell migration in vitro, and invasive or metastatic behaviours in vivo. SHARP1 is required, and sufficient, to limit expression of HIF-target genes. In primary TNBC, endogenous SHARP1 levels are inversely correlated with those of HIF targets. Mechanistically, SHARP1 binds to HIFs and promotes HIF proteasomal degradation by serving as the HIF-presenting factor to the proteasome. This process is independent of pVHL (von Hippel-Lindau tumour suppressor), hypoxia and the ubiquitination machinery. SHARP1 therefore determines the intrinsic instability of HIF proteins to act in parallel to, and cooperate with, oxygen levels. This work sheds light on the mechanisms and pathways by which TNBC acquires invasiveness and metastatic propensity.
Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Regulación Neoplásica de la Expresión Génica , Metástasis de la Neoplasia , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Ciclina G2/genética , Femenino , Humanos , Estimación de Kaplan-Meier , Análisis MultivarianteRESUMEN
BACKGROUND: Glioblastoma (GBM) is the most aggressive type of primary brain tumor, characterized by the intrinsic resistance to chemotherapy due to the presence of a highly aggressive Cancer Stem Cell (CSC) sub-population. In this context, Bone Morphogenetic Proteins (BMPs) have been demonstrated to induce CSC differentiation and to sensitize GBM cells to treatments. METHODS: The BMP-2 mimicking peptide, named GBMP1a, was synthesized on solid-phase by Fmoc chemistry. Structural characterization and prediction of receptor binding were obtained by Circular Dicroism (CD) and NRM analyses. Activation of BMP signalling was evaluated by a luciferase reporter assay and western blot. Pro-differentiating effects of GBMP1a were verified by immunostaining and neurosphere assay in primary glioblastoma cultures. RESULTS: CD and NMR showed that GBMP1a correctly folds into expected tridimensional structures and predicted its binding to BMPR-IA to the same epitope as in the native complex. Reporter analysis disclosed that GBMP1a is able to activate BMP signalling in GBM cells. Moreover, BMP-signalling activation was specifically dependent on smad1/5/8 phosphorylation. Finally, we confirmed that GBMP1a treatment is sufficient to enhance osteogenic differentiation of Mesenchymal Stem Cells and to induce astroglial differentiation of glioma stem cells (GSCs) in vitro. CONCLUSIONS: GBMP1a was demonstrated to be a good inducer of GSC differentiation, thus being considered a potential anti-cancer tool to be further developed for GBM treatment. GENERAL SIGNIFICANCE: These data highlight the role of BMP-mimicking peptides as potential anti-cancer agents against GBM and stimulate the further development of GBMP1a-based structures in order to enhance its stability and activity.
Asunto(s)
Antineoplásicos/farmacología , Proteína Morfogenética Ósea 2/farmacología , Glioblastoma/patología , Células Madre Neoplásicas/efectos de los fármacos , Fragmentos de Péptidos/farmacología , Astrocitos/citología , Astrocitos/efectos de los fármacos , Proteína Morfogenética Ósea 2/química , Diferenciación Celular/efectos de los fármacos , Dacarbazina/análogos & derivados , Dacarbazina/farmacología , Humanos , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/efectos de los fármacos , Imitación Molecular , Células Madre Neoplásicas/citología , Osteogénesis/efectos de los fármacos , Fragmentos de Péptidos/química , TemozolomidaRESUMEN
5-aminolevulinic acid (5-ALA) introduction in the surgical management of Glioblastoma (GBM) enables the intra-operatively identification of cancer cells in the mass by means of fluorescence. Here, we analyzed the phenotype of GBM cells isolated from distinct tumour areas determined by 5-ALA (tumour core, 5-ALA intense and vague layers) and the potency of 5-ALA labelling in identifying GBM cells and cancer stem cells (CSCs) in the mass. 5-ALA identified distinct layers in the mass, with less differentiated cells residing in the core of the tumour. 5-ALA was able to stain up to 68.5% of CD133(+) cells in the 5-ALA intense layer and, although 5-ALA(+) cells retrieved from different tumour areas contained a similar proportion of CD133(+) cells (range 27.5-35.6%), those from the vague layer displayed the lowest ability to self-renew. In conclusion, our data demonstrate that a substantial amount of GBM cells and CSCs in the mass are able to avoid 5-ALA labelling and support the presence of heterogenic CSC populations in the GBM mass.
Asunto(s)
Ácido Aminolevulínico , Neoplasias Encefálicas/patología , Glioblastoma/patología , Células Madre Neoplásicas/patología , Fármacos Fotosensibilizantes , Antígeno AC133 , Ácido Aminolevulínico/metabolismo , Antígenos CD/metabolismo , Biopsia , Neoplasias Encefálicas/cirugía , Citometría de Flujo , Glioblastoma/cirugía , Glicoproteínas/metabolismo , Humanos , Antígeno Ki-67/metabolismo , Células Madre Neoplásicas/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Péptidos/metabolismo , Fármacos Fotosensibilizantes/metabolismoRESUMEN
Introduction: Glioblastoma (grade IV) is the most aggressive primary brain tumor in adults, representing one of the biggest therapeutic challenges due to its highly aggressive nature. In this study, we investigated the impact of millimeter waves on tridimensional glioblastoma organoids derived directly from patient tumors. Our goal was to explore novel therapeutic possibilities in the fight against this challenging disease. Methods: The exposure setup was meticulously developed in-house, and we employed a comprehensive dosimetry approach, combining numerical and experimental methods. Biological endpoints included a global transcriptional profiling analysis to highlight possible deregulated pathways, analysis of cell morphological changes, and cell phenotypic characterization which are all important players in the control of glioblastoma progression. Results and discussion: Our results revealed a significant effect of continuous millimeter waves at 30.5 GHz on cell proliferation and apoptosis, although without affecting the differentiation status of glioblastoma cells composing the organoids. Excitingly, when applying a power level of 0.1 W (Root Mean Square), we discovered a remarkable (statistically significant) therapeutic effect when combined with the chemotherapeutic agent Temozolomide, leading to increased glioblastoma cell death. These findings present a promising interventional window for treating glioblastoma cells, harnessing the potential therapeutic benefits of 30.5 GHz CW exposure. Temperature increase during treatments was carefully monitored and simulated with a good agreement, demonstrating a negligible involvement of the temperature elevation for the observed effects. By exploring this innovative approach, we pave the way for improved future treatments of glioblastoma that has remained exceptionally challenging until now.
RESUMEN
In the last years, we have seen the emergence of different tools that have changed the face of biology from a simple modeling level to a more systematic science. The transparent zebrafish embryo is one of the living models in which, after germline transformation with reporter protein-coding genes, specific fluorescent cell populations can be followed at single-cell resolution. The genetically modified embryos, larvae and adults, resulting from the transformation, are individuals in which time lapse analysis, digital imaging quantification, FACS sorting and next-generation sequencing can be performed in specific times and tissues. These multifaceted genetic and cellular approaches have permitted to dissect molecular interactions at the subcellular, intercellular, tissue and whole-animal level, thus allowing integration of cellular and developmental genetics with molecular imaging in the resulting frame of modern biology. In this review, we describe a new step in the zebrafish road to system biology, based on the use of transgenic biosensor animals expressing fluorescent proteins under the control of signaling pathway-responsive cis-elements. In particular, we provide here the rationale and details of this powerful tool, trying to focus on its huge potentialities in basic and applied research, while also discussing limits and potential technological evolutions of this approach.
Asunto(s)
Animales Modificados Genéticamente , Genes Reporteros , Transducción de Señal , Pez Cebra/genética , Pez Cebra/metabolismo , Animales , Embrión no Mamífero , Regiones Promotoras Genéticas , Pez Cebra/embriología , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismoRESUMEN
The involvement of Wnt signaling in normal tissue homeostasis and disease has been widely demonstrated over the last 20 years. In particular, dysregulation of Wnt pathway components has been suggested as a relevant hallmark of several neoplastic malignancies, playing a role in cancer onset, progression, and response to treatments. In this review, we summarize the current knowledge on the instructions provided by Wnt signaling during organogenesis and, particularly, brain development. Moreover, we recapitulate the most relevant mechanisms through which aberrant Wnt pathway activation may impact on brain tumorigenesis and brain tumor aggressiveness, with a particular focus on the mutual interdependency existing between Wnt signaling components and the brain tumor microenvironment. Finally, the latest anti-cancer therapeutic approaches employing the specific targeting of Wnt signaling are extensively reviewed and discussed. In conclusion, here we provide evidence that Wnt signaling, due to its pleiotropic involvement in several brain tumor features, may represent a relevant target in this context, although additional efforts will be needed to: (i) demonstrate the real clinical impact of Wnt inhibition in these tumors; (ii) overcome some still unsolved concerns about the potential systemic effects of such approaches; (iii) achieve efficient brain penetration.
RESUMEN
Medulloblastoma is a highly malignant pediatric brain tumor characterized by its aggressive nature and limited treatment options. Metabolic changes have recently emerged as key factors in the development, progression, and response to therapy in various types of cancer. Cancer cells exhibit remarkable adaptability by modulating glucose, lipids, amino acids, and nucleotide metabolism to survive in nutrient- and oxygen-deprived environments. Although medulloblastoma has been extensively studied from a genomic perspective, leading to the identification of four subgroups and their respective subcategories, the investigation of its metabolic phenotype has remained relatively understudied. This review focus on the available literature, aiming to summarize the current knowledge about the main metabolic pathways that are deregulated in medulloblastoma tumors, while emphasizing the controversial aspects and the progress that is yet to be made. Furthermore, we underscored the insights gained so far regarding the impact of metabolism on the development of drug resistance in medulloblastoma and the therapeutic strategies employed to target specific metabolic pathways.
Asunto(s)
Neoplasias Encefálicas , Neoplasias Cerebelosas , Meduloblastoma , Humanos , Meduloblastoma/metabolismo , Neoplasias Cerebelosas/metabolismo , Hambre , Redes y Vías MetabólicasRESUMEN
We previously demonstrated that Annexin A2 (ANXA2) is a pivotal mediator of the pro-oncogenic features displayed by glioblastoma (GBM) tumors, the deadliest adult brain malignancies, being involved in cell stemness, proliferation and invasion, thus negatively impacting patient prognosis. Based on these results, we hypothesized that compounds able to revert ANXA2-dependent transcriptional features could be exploited as reliable treatments to inhibit GBM cell aggressiveness by hampering their proliferative and migratory potential. Transcriptional signatures obtained by the modulation of ANXA2 activity/levels were functionally mapped through the QUADrATiC bioinformatic tool for compound identification. Selected compounds were screened by cell proliferation and migration assays in primary GBM cells, and we identified Homoharringtonine (HHT) as a potent inhibitor of GBM cell motility and proliferation, without affecting their viability. A further molecular characterization of the effects displayed by HHT, confirmed its ability to inhibit a transcriptional program involved in cell migration and invasion. Moreover, we demonstrated that the multiple antitumoral effects displayed by HHT are correlated to the inhibition of a platelet derived growth factor receptor α (PDGFRα)-dependent intracellular signaling through the impairment of Signal transducer and activator of transcription 3 (STAT3) and Ras homolog family member A (RhoA) axes. Our results demonstrate that HHT may act as a potent inhibitor of cancer cell proliferation and invasion in GBM, by hampering multiple PDGFRα-dependent oncogenic signals transduced through the STAT3 and RhoA intracellular components, finally suggesting its potential transferability for achieving an effective impairment of peculiar GBM hallmarks.
Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Adulto , Humanos , Glioblastoma/tratamiento farmacológico , Glioblastoma/metabolismo , Homoharringtonina/farmacología , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/farmacología , Regulación Neoplásica de la Expresión Génica , Proliferación Celular , Neoplasias Encefálicas/metabolismo , Factor de Transcripción STAT3/metabolismo , Movimiento Celular , Línea Celular TumoralRESUMEN
Chemotherapy resistance is considered one of the main causes of tumor relapse, still challenging researchers for the identification of the molecular mechanisms sustaining its emergence. Here, we setup and characterized chemotherapy-resistant models of Medulloblastoma (MB), one of the most lethal pediatric brain tumors, to uncover targetable vulnerabilities associated to their resistant phenotype. Integration of proteomic, transcriptomic and kinomic data revealed a significant deregulation of several pathways in resistant MB cells, converging to cell metabolism, RNA/protein homeostasis, and immune response, eventually impacting on patient outcome. Moreover, resistant MB cell response to a large library of compounds through a high-throughput screening (HTS), highlighted nucleoside metabolism as a relevant vulnerability of chemotolerant cells, with peculiar antimetabolites demonstrating increased efficacy against them and even synergism with conventional chemotherapeutics. Our results suggest that drug-resistant cells significantly rewire multiple cellular processes, allowing their adaptation to a chemotoxic environment, nevertheless exposing alternative actionable susceptibilities for their specific targeting.
Asunto(s)
Neoplasias Encefálicas , Neoplasias Cerebelosas , Meduloblastoma , Niño , Humanos , Meduloblastoma/tratamiento farmacológico , Meduloblastoma/genética , Meduloblastoma/metabolismo , Nucleósidos/farmacología , Nucleósidos/uso terapéutico , Proteómica , Neoplasias Cerebelosas/tratamiento farmacológico , Neoplasias Cerebelosas/genética , Neoplasias Cerebelosas/metabolismo , Línea Celular TumoralRESUMEN
Recent proteomic, metabolomic, and transcriptomic studies have highlighted a connection between changes in mitochondria physiology and cellular pathophysiological mechanisms. Secondary assays to assess the function of these organelles appear fundamental to validate these -omics findings. Although mitochondrial membrane potential is widely recognized as an indicator of mitochondrial activity, high-content imaging-based approaches coupled to multiparametric to measure it have not been established yet. In this paper, we describe a methodology for the unbiased high-throughput quantification of mitochondrial membrane potential in vitro, which is suitable for 2D to 3D models. We successfully used our method to analyze mitochondrial membrane potential in monolayers of human fibroblasts, neural stem cells, spheroids, and isolated muscle fibers. Moreover, by combining automated image analysis and machine learning, we were able to discriminate melanoma cells from macrophages in co-culture and to analyze the subpopulations separately. Our data demonstrated that our method is a widely applicable strategy for large-scale profiling of mitochondrial activity.
Asunto(s)
Microscopía , Proteómica , Humanos , Potencial de la Membrana Mitocondrial , Mitocondrias/metabolismo , Fibroblastos/metabolismoRESUMEN
Juvenile myelomonocytic leukemia (JMML) is a rare clonal stem cell disorder that occurs in early childhood and is characterized by the hyperactivation of the RAS pathway in 95% of the patients. JMML is characterized by a hyperproliferation of granulocytes and monocytes, and little is known about the heterogeneous nature of leukemia-initiating cells, as well as of the cellular hierarchy of the JMML bone marrow. In this study, we report the generation and characterization of a novel patient-derived three-dimensional (3D) in vitro JMML model, called patient-derived JMML Atypical Organoid (pd-JAO), sustaining the long-term proliferation of JMML cells with stem cell features and patient-specific hallmarks. JMML cells brewed in a 3D model under different microenvironmental conditions acquired proliferative and survival advantages when placed under low oxygen tension. Transcriptomic and microscopic analyses revealed the activation of specific metabolic energy pathways and the inactivation of processes leading to cell death. Furthermore, we demonstrated the pd-JAO-derived cells' migratory, propagation, and self-renewal capacities. Our study contributes to the development of a robust JMML 3D in vitro model for studying and defining the impact of microenvironmental stimuli on JMML disease and the molecular mechanisms that regulate JMML initiating and propagating cells. Pd-JAO may become a promising model for compound tests focusing on new therapeutic interventions aimed at eradicating JMML progenitors and controlling JMML disease.
Asunto(s)
Leucemia Mielomonocítica Juvenil , Humanos , Preescolar , Leucemia Mielomonocítica Juvenil/terapia , Médula Ósea , Granulocitos , Proliferación CelularRESUMEN
We recently described a three-layer concentric model of a glioblastoma (GBM) related to a specific distribution of molecular and phenotypic characteristics driven by the intratumoral hypoxic gradient in which the cancer stem cells niche is located in the hypoxic necrotic core of the tumour. The purpose of this study was to investigate the relationship between O(6)-methylguanine-DNA methyltransferase (MGMT) promoter methylation status and MGMT expression in GBM samples collected according to the three-layer concentric model. Multiple tissue samples were obtained, by means of image-guided surgery, from the three concentric layers of newly diagnosed GBM. Two samples from each layer were collected from 12 patients (total 72 samples). Immunohistochemical analysis was performed on formalin-fixed paraffin-embedded tissue samples. The methylation status of the MGMT promoter was determined by methylation-specific polymerase-chain-reaction analysis. In all tumours, MGMT protein expression decreased progressively from the inner to the outer layer, and methylation of the MGMT promoter was unrelated to tumour layer. In particular, the MGMT promoter was unmethylated in all layers in 41.7% of tumours, methylated in all layers in 25%, and variably methylated in the three layers in 33.3%. We recorded concordance between MGMT expression and MGMT promoter methylation status within the GBM in only 58.8% of the samples collected. Our data suggest that both MGMT expression and promoter methylation data may be variable throughout GBM and that they may, consequently, depend on the site of surgical sample collection, even in the same patient. However, whereas MGMT expression is pre-operatively predictable when sampling is performed according to the three-layer concentric model, MGMT promoter methylation is not. These results must be considered when sample collection is performed for assessment of MGMT data.
Asunto(s)
Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Metilasas de Modificación del ADN/biosíntesis , Enzimas Reparadoras del ADN/biosíntesis , Glioblastoma/genética , Glioblastoma/patología , Proteínas Supresoras de Tumor/biosíntesis , Adulto , Anciano , Neoplasias Encefálicas/cirugía , Metilación de ADN , Metilasas de Modificación del ADN/genética , Enzimas Reparadoras del ADN/genética , ADN de Neoplasias/genética , Femenino , Regulación Neoplásica de la Expresión Génica/genética , Glioblastoma/cirugía , Humanos , Inmunohistoquímica , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Necrosis , Adhesión en Parafina , Cirugía Asistida por Computador , Fijación del Tejido , Proteínas Supresoras de Tumor/genéticaRESUMEN
Despite being subjected to high-dose chemo and radiotherapy, glioblastoma (GBM) patients still encounter almost inevitable relapse, due to the capability of tumor cells to disseminate and invade normal brain tissues. Moreover, the presence of a cancer stem cell (CSC) subpopulation, already demonstrated to better resist and evade treatments, further frustrates potential therapeutic approaches. In this context, we previously demonstrated that GBM is characterized by a tightly-regulated balance between the ß-catenin cofactors TCF1 and TCF4, with high levels of TCF4 responsible for sustaining CSC in these tumors; thus, supporting their aggressive features. Since histone deacetylase inhibitors (HDI) have been reported to strongly reduce TCF4 levels in colon cancer cells, we hypothesized that they could also exert a similar therapeutic action in GBM. Here, we treated primary GBM cultures with Trichostatin-A and Vorinostat, demonstrating their ability to strongly suppress the Wnt-dependent pathways; thus, promoting CSC differentiation and concomitantly impairing GBM cell viability and proliferation. More interestingly, analysis of their molecular effects suggested a prominent HDI action against GBM cell motility/migration, which we demonstrated to rely on the inhibition of the RhoA-GTPase and interferon intracellular cascades. Our results suggest HDI as potential therapeutic agents in GBM, through their action on multiple cancer hallmarks.
RESUMEN
Glioblastoma multiforme (GBM) are highly proliferative tumors currently treated by surgical removal, followed by radiotherapy and chemotherapy, which are counteracted by intratumoral hypoxia. Here we exploited image guided surgery to sample multiple intratumoral areas to define potential cellular heterogeneity in correlation to the oxygen tension gradient within the GBM mass. Our results indicate that more immature cells are localized in the inner core and in the intermediate layer of the tumor mass, whereas more committed cells, expressing glial fibrillary acidic protein and beta-III-tubulin, are distributed along the peripheral and neo-vascularized area, where Smad1/5/8 and Stat3 result to be activated. Moreover, GBM stem cells, identified with the stem cell marker CD133, express high level of DNA repair protein O6-methylguanine-DNA-methyltransferase (MGMT) known to be involved in chemotherapy resistance and highly expressed in the inner core of the tumor mass. Importantly, these cells and, particularly, CD133(+) cells result to be resistant to temozolomide (TMZ), the most used oral alkylating agent for the treatment of GBM, which specifically causes apoptosis only in GBM cells derived from the peripheral layer of the tumor mass. These results indicate a correlation between the intratumoral hypoxic gradient, the tumor cell phenotype, and the tumor resistance to chemotherapy leading to a novel concentric model of tumor stem cell niche, which may be useful to define the real localization of the chemoresistant GBM tumor cells in order to design more effective treatment strategies.
Asunto(s)
Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Metilasas de Modificación del ADN/biosíntesis , Enzimas Reparadoras del ADN/biosíntesis , Glioblastoma/metabolismo , Glioblastoma/patología , Hipoxia/patología , Células Madre Neoplásicas/metabolismo , Proteínas Supresoras de Tumor/biosíntesis , Antígeno AC133 , Adulto , Antígenos CD/metabolismo , Neoplasias Encefálicas/enzimología , Desdiferenciación Celular/fisiología , Metilasas de Modificación del ADN/genética , Enzimas Reparadoras del ADN/genética , Glioblastoma/enzimología , Glicoproteínas/metabolismo , Humanos , Hipoxia/enzimología , Recién Nacido , Imagen por Resonancia Magnética , Persona de Mediana Edad , Células Madre Neoplásicas/enzimología , Células Madre Neoplásicas/patología , Procedimientos Neuroquirúrgicos , Péptidos/metabolismo , Células Tumorales Cultivadas , Proteínas Supresoras de Tumor/genéticaRESUMEN
Medulloblastoma (MDB) is the most common brain malignancy of childhood. It is currently thought that MDB arises from aberrantly functioning stem cells in the cerebellum that fail to maintain proper control of self-renewal. Additionally, it has been reported that MDB cells display higher endogenous Notch signaling activation, known to promote the survival and proliferation of neoplastic neural stem cells and to inhibit their differentiation. Although interaction between hypoxia-inducible factor-1α (HIF-1α) and Notch signaling is required to maintain normal neural precursors in an undifferentiated state, an interaction has not been identified in MDB. Here, we investigate whether hypoxia, through HIF-1α stabilization, modulates Notch1 signaling in primary MDB-derived cells. Our results indicate that MDB-derived precursor cells require hypoxic conditions for in vitro expansion, whereas acute exposure to 20% oxygen induces tumor cell differentiation and death through inhibition of Notch signaling. Importantly, stimulating Notch1 activation with its ligand Dll4 under hypoxic conditions leads to expansion of MDB-derived CD133(+) and nestin(+) precursors, suggesting a regulatory effect on stem cells. In contrast, MDB cells undergo neuronal differentiation when treated with γ-secretase inhibitor, which prevents Notch activation. These results suggest that hypoxia, by maintaining Notch1 in its active form, preserves MDB stem cell viability and expansion.
Asunto(s)
Neoplasias Encefálicas/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Meduloblastoma/metabolismo , Células Madre Neoplásicas/citología , Células Madre Neoplásicas/metabolismo , Receptores Notch/metabolismo , Transducción de Señal/fisiología , Antígeno AC133 , Antígenos CD/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Neoplasias Encefálicas/genética , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Proliferación Celular , Supervivencia Celular/genética , Supervivencia Celular/fisiología , Glicoproteínas/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Inmunohistoquímica , Proteínas de Filamentos Intermediarios/metabolismo , Meduloblastoma/genética , Proteínas del Tejido Nervioso/metabolismo , Nestina , Péptidos/metabolismo , Reacción en Cadena de la Polimerasa , Receptor Notch1/genética , Receptor Notch1/metabolismo , Transducción de Señal/genética , Factor de Transcripción HES-1 , Células Tumorales CultivadasRESUMEN
Tumors arising in the central nervous system are thought to originate from a sub-population of cells named cancer stem cells (CSCs) or tumor initiating cells (TICs) that possess an immature phenotype, combined with self-renewal and chemotherapy resistance capacity. Moreover, in the last years, these cells have been identified in particular brain tumor niches fundamental for supporting their characteristics. In this paper, we report studies from many authors demonstrating that hypoxia or the so called "hypoxic niche" plays a crucial role in controlling CSC molecular and phenotypic profile. We recently investigated the relationship existing between Glioblastoma (GBM) stem cells and their niche, defining the theory of three-concentric layers model for GBM mass. According to this model, GBM stem cells reside preferentially within the hypoxic core of the tumour mass, while more differentiated cells are mainly localized along the peripheral and vascularized part of the tumour. This GBM model provides explanation of the effects mediated by the tumour microenvironment on the phenotypic and molecular regulation of GBM stem cells, describing their spatial distribution in the tumor bulk. Moreover, we discuss the possible clinical implications of the creation of this model for future GBM patient management and novel therapeutic strategies development.