Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 26(14): 10961-10973, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38526354

RESUMEN

SARS-CoV-2 has caused severe illness and anxiety worldwide, evolving into more dreadful variants capable of evading the host's immunity. Cytokine storms, led by PI3Kγ, are common in cancer and SARS-CoV-2. Naturally, there is a yearning to see whether any drugs could alleviate cytokine storms for both. Upon investigation, we identified two anticancer drugs, Duvelisib and Eganelisib, that could also work against SARS-CoV-2. This report is the first to decipher their synergic therapeutic effectiveness against COVID-19 and cancer with molecular insights from atomistic simulations. In addition to PI3Kγ, these drugs exhibit specificity for the main protease among all SARS-CoV-2 targets, with significant negative binding free energies and small time-dependent conformational changes of the complexes. Complexation makes active sites and secondary structures highly mechanically stiff, with barely any deformation. Replica simulations estimated large pulling forces in enhanced sampling to dissociate the drugs from Mpro's active site. Furthermore, the radial distribution function (RDF) demonstrated that the therapeutic molecules were closest to the His41 and Cys145 catalytic dyad residues. Finally, analyses implied Duvelisib and Eganelisib as promising dual-purposed anti-COVID and anticancer drugs, potentially targeting Mpro and PI3Kγ to stop virus replication and cytokine storms concomitantly. We also distinguished hotspot residues imparting significant interactions.


Asunto(s)
Antineoplásicos , COVID-19 , Isoquinolinas , Neoplasias , Purinas , Humanos , SARS-CoV-2 , Síndrome de Liberación de Citoquinas , Neoplasias/tratamiento farmacológico , Inhibidores de Proteínas Quinasas , Antineoplásicos/farmacología , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular
2.
Photosynth Res ; 156(3): 337-354, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36847893

RESUMEN

Photosynthetic organisms have evolved to work under low and high lights in photoprotection, acting as a scavenger of reactive oxygen species. The light-dependent xanthophyll cycle involved in this process is performed by a key enzyme (present in the thylakoid lumen), Violaxanthin De-Epoxidase (VDE), in the presence of violaxanthin (Vio) and ascorbic acid substrates. Phylogenetically, VDE is found to be connected with an ancestral enzyme Chlorophycean Violaxanthin De-Epoxidase (CVDE), present in the green algae on the stromal side of the thylakoid membrane. However, the structure and functions of CVDE were not known. In search of functional similarities involving this cycle, the structure, binding conformation, stability, and interaction mechanism of CVDE are explored with the two substrates compared to VDE. The structure of CVDE was determined by homology modeling and validated. In silico docking (of first-principles optimized substrates) revealed it has a larger catalytic domain than VDE. A thorough analysis of the binding affinity and stability of four enzyme-substrate complexes is performed by computing free energies and their decomposition, the root-mean-square deviation (RMSD) and fluctuation (RMSF), the radius of gyration, salt bridge, and hydrogen bonding interactions in molecular dynamics. Based on these, violaxanthin interacts with CVDE to a similar extent as that of VDE. Hence, its role is expected to be the same for both enzymes. On the contrary, ascorbic acid has a weaker interaction with CVDE than VDE. Given these interactions drive epoxidation or de-epoxidation in the xanthophyll cycle, it immediately discerns that either ascorbic acid does not participate in de-epoxidation or a different cofactor is necessary as CVDE has a weaker interaction with ascorbic acid than VDE.


Asunto(s)
Oxidorreductasas , Xantófilas , Oxidorreductasas/metabolismo , Xantófilas/metabolismo , Tilacoides/metabolismo
3.
Chemphyschem ; 24(21): e202300311, 2023 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-37578308

RESUMEN

UiO-66-NH2 -IM, a fluorescent metal-organic framework (MOF), was synthesized by post-synthetic modification of UiO-66-NH2 with 2-imidazole carboxaldehyde via a Schiff base reaction. It was examined using various characterization techniques (PXRD, FTIR, NMR, SEM, TGA, UV-Vis DRS, and photoluminescence spectroscopy). The emissive feature of UiO-66-NH2 -IM was utilized to detect volatile organic compounds (VOCs), metal ions, and anions, such as acetone, Fe3+ , and carbonate (CO3 2- ). Acetone turns off the high luminescence of UiO-66-NH2 -IM in DMSO, with the limit of detection (LOD) being 3.6 ppm. Similarly, Fe3+ in an aqueous medium is detected at LOD=0.67 µM (0.04 ppm) via quenching. On the contrary, CO3 2- in an aqueous medium significantly enhances the luminescence of UiO-66-NH2 -IM, which is detected with extremely high sensitivity (LOD=1.16 µM, i. e., 0.07 ppm). Large Stern-Volmer constant, Ksv , and low LOD values indicate excellent sensitivity of the post-synthetic MOF. Experimental data supported by density functional theory (DFT) calculations discern photo-induced electron transfer (PET), resonance energy transfer (RET), inner filter effect (IFE), or proton abstraction as putative sensing mechanisms. NMR and computational studies propose a proton abstraction mechanism for luminescence enhancement with CO3 2- . Moreover, the optical behavior of the post-synthetic material toward analytes is recyclable.

4.
J Biochem Mol Toxicol ; 37(8): e23377, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37098749

RESUMEN

Antimicrobial resistance which is increasing at an alarming rate is a severe public health issue worldwide. Hence, the development of novel antibiotics is an urgent need as microbes have developed resistance against available antibiotics. In search of novel antimicrobial agents, a convenient route for the preparation of substituted 3-(1-phenyl-3-(p-tolyl)-1H-pyrazol-4-yl)-1-(2-phenyl-5-(pyridin-3-yl)-1,3,4-oxadiazol-3(2H)-yl)prop-2-en-1-ones (6a-6o) has been adopted by using pyridine-3-carbohydrazide and various aromatic aldehydes. The newly synthesized compounds were characterized by using various spectral techniques, for example, IR, 1 H NMR, 13 C NMR, and mass spectroscopy. Synthesized hybrids were studied for in vitro antimicrobial potency against various bacterial and fungal strains. Antibacterial results revealed that compounds 6e, 6h, 6i, 6l, and 6m were found to be most active against bacterial strains as they showed minimum inhibitory concentration (MIC) value of 62.5 µg/mL while compounds 6d, 6e, and 6h showed MIC value of 200 µg/mL against Candida albicans. The quantum parameters that relate to the bioavailability of the compounds were computed, followed by docking with different bacterial and fungal targets like sortase A, dihydrofolate reductase, thymidylate kinase, gyrase B, sterol 14-alpha demethylase. The experimental and computational results are in good agreement.


Asunto(s)
Antiinfecciosos , Oxadiazoles , Relación Estructura-Actividad , Simulación del Acoplamiento Molecular , Antibacterianos/farmacología , Antibacterianos/química , Antiinfecciosos/farmacología , Antiinfecciosos/química , Bacterias , Pruebas de Sensibilidad Microbiana , Pirazoles/farmacología , Piridinas/farmacología , Estructura Molecular
5.
Cell Biochem Funct ; 41(1): 98-111, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36478589

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has continued evolving for survival and adaptation by mutating itself into different variants of concern, including omicron. Several studies and clinical trials found fluvoxamine, an Food and Drug Administration-approved antidepressant drug, to be effective at preventing mild coronavirus disease 2019 (COVID-19) from progressing to severe diseases. However, the mechanism of fluvoxamine's direct antiviral action against COVID-19 is still unknown. Fluvoxamine was docked with 11 SARS-CoV-2 targets and subjected to stability, conformational changes, and binding free energy analyses to explore its mode of action. Of the targets, nonstructural protein 14 (NSP14), main protease (Mpro), and papain-like protease (PLpro) had the best docking scores with fluvoxamine. Consistent with the docking results, it was confirmed by molecular dynamics simulations that the NSP14 N7-MTase ((N7-guanine)-methyltransferase)-fluvoxamine, Mpro-fluvoxamine, and PLpro-fluvoxamine complexes are stable, with the lowest binding free energies of -105.1, -82.7, and - 38.5 kJ/mol, respectively. A number of hotspot residues involved in the interaction were also identified. These include Glu166, Asp187, His41, and Cys145 in Mpro, Gly163 and Arg166 in PLpro, and Glu302, Gly333, and Phe426 in NSP14, which could aid in the development of better antivirals against SARS-CoV-2.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Fluvoxamina , SARS-CoV-2 , Humanos , Antivirales/farmacología , Antivirales/uso terapéutico , COVID-19/terapia , Fluvoxamina/química , Fluvoxamina/farmacología , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Péptido Hidrolasas/metabolismo , SARS-CoV-2/química , SARS-CoV-2/efectos de los fármacos , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/metabolismo , Proteasas 3C de Coronavirus
6.
Nanotechnology ; 34(4)2022 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-36240696

RESUMEN

Lithium-ion batteries (LIBs) have emerged as a technological game-changer. Due to the rising price of lithium and the environmental concerns LIBs pose, their use is no longer viable. Sodium (Na) may be the best contender among the alternatives for replacing lithium. Conventional graphite has a limited capacity for Na storage. Hence,α-graphyne, an allotrope of carbon, was studied here as a potential anode material for Na-ion batteries (NIBs), employing density functional theory. In-plane Na atom adsorption results in a semi-metallic to metallic transition ofα-graphyne. Electronic transport calculations show an increase in current after Na adsorption in graphyne. The successive adsorption of Na atoms on the surface of graphyne leads to a theoretical capacity of 1395.89 mA h g-1, which is much greater than graphite. The average open circuit voltage is 0.81 V, which is an ideal operating voltage for NIBs. Intra- and inter-hexagon Na diffusions have very low energy barriers of 0.18 eV and 0.96 eV, respectively, which ensure smooth operation during charge/discharge cycles. According to this study, theα-graphyne monolayer thus has the potential to be employed as an anode in NIBs.

7.
J Mol Liq ; 351: 118633, 2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-35125571

RESUMEN

The coronaviridae family has generated highly virulent viruses, including the ones responsible for three major pandemics in last two decades with SARS in 2002, MERS outbreak in 2012 and the current nCOVID19 crisis that has turned the world breadthless. Future outbreaks are also a plausible threat to mankind. As computational biologists, we are committed to address the need for a universal vaccine that can deter all these pathogenic viruses in a single shot. Notably, the spike proteins present in all these viruses function as credible PAMPs that are majorly sensed by human TLR4 receptors. Our study aims to recognize the amino acid sequence(s) of the viral spike proteins that are precisely responsible for interaction with human TLR4 and to screen the immunogenic epitopes present in them to develop a multi-epitope multi-target chimeric vaccine against the coronaviruses. Molecular design of the constructed vaccine peptide is qualified in silico; additionally, molecular docking and molecular dynamics simulation studies collectively reveal strong and stable interactions of the vaccine construct with TLRs and MHC receptors. In silico cloning is performed for proficient expression in bacterial systems. In silico immune simulation of the vaccine indicates highly immunogenic nature of the vaccine construct without any allergic response. The present biocomputational study hereby innovates a vaccine candidate - AbhiSCoVac hypothesized as a potent remedy to combat all the virulent forms of coronaviruses.

8.
J Proteome Res ; 20(2): 1296-1303, 2021 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-33472369

RESUMEN

SARS-CoV-2, a novel coronavirus causing overwhelming death and infection worldwide, has emerged as a pandemic. Compared to its predecessor SARS-CoV, SARS-CoV-2 is more infective for being highly contagious and exhibiting tighter binding with host angiotensin-converting enzyme 2 (hACE-2). The entry of the virus into host cells is mediated by the interaction of its spike protein with hACE-2. Thus, a peptide that has a resemblance to hACE-2 but can overpower the spike protein-hACE-2 interaction will be a potential therapeutic to contain this virus. The non-interacting residues in the receptor-binding domain of hACE-2 have been mutated to generate a library of 136 new peptides. Out of this library, docking and virtual screening discover seven peptides that can exert a stronger interaction with the spike protein than hACE-2. A peptide derived from simultaneous mutation of all the non-interacting residues of hACE-2 yields almost three-fold stronger interaction than hACE-2 and thus turns out here to be the best peptide inhibitor of the novel coronavirus. The binding of the best peptide inhibitor with the spike protein is explored further by molecular dynamics, free energy, and principal component analysis, which demonstrate its efficacy compared to hACE-2. The delivery of the screened inhibitors with nanocarriers like metal-organic frameworks will be worthy of further consideration to boost their efficacy.


Asunto(s)
Enzima Convertidora de Angiotensina 2/metabolismo , Antivirales/farmacología , Materiales Biomiméticos/farmacología , Péptidos/farmacología , Glicoproteína de la Espiga del Coronavirus/antagonistas & inhibidores , Enzima Convertidora de Angiotensina 2/química , Antivirales/química , Materiales Biomiméticos/química , COVID-19/epidemiología , COVID-19/prevención & control , COVID-19/virología , Humanos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Pandemias , Péptidos/química , Unión Proteica/efectos de los fármacos , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/metabolismo , SARS-CoV-2/fisiología , Glicoproteína de la Espiga del Coronavirus/metabolismo
9.
Chemistry ; 26(55): 12624-12631, 2020 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-32557878

RESUMEN

The design and construction of "thermodynamically stable" metal-organic frameworks (MOFs) that can survive in liquid water, boiling water, and acidic/basic solutions over a wide pH range is highly desirable for many practical applications, especially adsorption-based gas separations with obvious scalable preparations. Herein, a new thermodynamically stable Ni MOF, {[Ni(L)(1,4-NDC)(H2 O)2 ]}n (IITKGP-20; L=4,4'-azobispyridine; 1,4-NDC=1,4-naphthalene dicarboxylic acid; IITKGP stands for the Indian Institute of Technology Kharagpur), has been designed that displays moderate porosity with a BET surface area of 218 m2 g-1 and micropores along the [10-1] direction. As an alternative to a cost-intensive, cryogenic, high-pressure distillation process for the separation of hydrocarbons, MOFs have recently shown promise for such separations. Thus, towards an application standpoint, this MOF exhibits a higher uptake of C2 hydrocarbons over that of C1 hydrocarbon under ambient conditions, with one of the highest selectivities based on the ideal adsorbed solution theory (IAST) method. A combination of two strategies (the presence of stronger metal-N coordination of the spacer and the hydrophobicity of the aromatic moiety of the organic ligand) possibly makes the framework highly robust, even stable in boiling water and over a wide range of pH 2-10, and represents the first example of a thermodynamically stable MOF displaying a 2D structural network. Moreover, this material is easily scalable by heating the reaction mixture at reflux overnight. Because such separations are performed in the presence of water vapor and acidic gases, there is a great need to explore thermodynamically stable MOFs that retain not only structural integrity, but also the porosity of the frameworks.

10.
J Chem Phys ; 142(3): 034704, 2015 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-25612722

RESUMEN

Atomistic simulations of model nonpolar nanotubes in a Stockmayer liquid are carried out for varying nanotube diameter and nanotube-solvent interactions to investigate solvophobic interactions in generic dipolar solvents. We have considered model armchair type single-walled nonpolar nanotubes with increasing radii from (5,5) to (12,12). The interactions between solute and solvent molecules are modeled by the well-known Lennard-Jones and repulsive Weeks-Chandler-Andersen potentials. We have investigated the density profiles and microscopic arrangement of Stockmayer molecules, orientational profiles of their dipole vectors, time dependence of their occupation, and also the translational and rotational motion of solvent molecules in confined environments of the cylindrical nanopores and also in their external peripheral regions. The present results of structural and dynamical properties of Stockmayer molecules inside and near atomistically rough nonpolar surfaces including their wetting and dewetting behavior for varying interactions provide a more generic picture of solvophobic effects experienced by simple dipolar liquids without any specific interactions such as hydrogen bonds.


Asunto(s)
Nanotubos/química , Humectabilidad , Enlace de Hidrógeno , Modelos Químicos , Porosidad , Solventes/química
11.
Chem Sci ; 15(15): 5507-5515, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38638223

RESUMEN

Ionic liquids (ILs) have become an alternative green solvent for storage and for stability of DNA. However, an in-depth understanding of binding and molecular interactions between ILs and DNA is needed. In this respect, magnetic ILs (MILs) are promising due to their tunable physicochemical properties. Various spectroscopic techniques and molecular simulations have been employed to unravel the critical factors of the strength and binding mechanism of MILs with DNA. UV-vis spectra unravel the multimodal binding of MILs with DNA, and the intrusion of IL molecules into the minor groove of DNA has been observed from dye displacement studies. Fluorescence correlation spectroscopic studies and scanning electron microscopy confirm the compaction of the DNA. ITC and molecular docking studies estimate the binding affinity of DNA with MILs, of ∼7 kcal mol-1. The 1 µs long-MD simulations give insight into the structural changes in the DNA in the MIL environment. Due to strong interaction with choline ions in the close vicinity, DNA helixes bend or squeeze in length and dilate in diameter (elliptical → spherical), leading to compaction. The post-MD parameters suggest a stronger interaction with [Ch]2[Mn] IL than with [Ch][Fe] IL; hence, the former induces DNA compaction to a more significant extent. Furthermore, decompaction is observed with the addition of sodium salts and is characterized using spectroscopic methods.

12.
Int Immunopharmacol ; 133: 112120, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38657497

RESUMEN

Despite the efforts of global programme to eliminate lymphatic filariasis (GPELF), the threat of lymphatic filariasis (LF) still looms over humanity in terms of long-term disabilities, and morbidities across the globe. In light of this situation, investigators have chosen to focus on the development of immunotherapeutics targeting the physiologically important filarial-specific proteins. Glutaredoxin (16.43 kDa) plays a pivotal role in filarial redox biology, serving as a vital contributor. In the context of the intra-host survival of filarial parasites, this antioxidant helps in mitigating the oxidative stress imposed by the host immune system. Given its significant contribution, the development of a vaccine targeting glutaredoxin holds promise as a new avenue for achieving a filaria-free world. Herein, multi-epitope-based vaccine was designed using advanced immunoinformatics approach. Initially, 4B-cell epitopes and 6 T-cell epitopes (4 MHC I and 2 MHC II) were identified from the 146 amino acid long sequence of glutaredoxin of the human filarid, Wuchereria bancrofti. Subsequent clustering of these epitopes with linker peptides finalized the vaccine structure. To boost TLR-mediated innate immunity, TLR-specific adjuvants were incorporated into the designed vaccine. After that, experimental analyses confirm the designed vaccine, Vac4 as anefficient ligand of human TLR5 to elicit protective innate immunity against filarial glutaredoxin. Immune simulation further demonstrated abundant levels of IgG and IgM as crucial contributors in triggering vaccine-induced adaptive responses in the recipients. Hence, to facilitate the validation of immunogenicity of the designed vaccine, Vac4 was cloned in silico in pET28a(+) expression vector for recombinant production. Taken together, our findings suggest that vaccine-mediated targeting of filarial glutaredoxin could be a future option for intervening LF on a global scale.


Asunto(s)
Filariasis Linfática , Glutarredoxinas , Wuchereria bancrofti , Glutarredoxinas/inmunología , Glutarredoxinas/metabolismo , Animales , Filariasis Linfática/prevención & control , Filariasis Linfática/inmunología , Humanos , Wuchereria bancrofti/inmunología , Epítopos de Linfocito T/inmunología , Vacunología/métodos , Epítopos de Linfocito B/inmunología , Vacunas de Subunidad/inmunología , Ratones , Antígenos Helmínticos/inmunología , Femenino , Ratones Endogámicos BALB C
13.
Clin Endocrinol (Oxf) ; 78(1): 36-42, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22757766

RESUMEN

OBJECTIVE: The effect of dysglycaemia on bone mineral density (BMD) has not been studied in young people with CF. We examined factors associated with BMD in a tertiary paediatric CF clinic. DESIGN: Retrospective, clinic-based study at The Children's Hospital at Westmead, Sydney. PATIENTS: Young people with CF aged ≤ 18 years. MEASUREMENTS: Bone mineral density was measured by dual-energy X-ray absorptiometry; main outcome measures were total body (TB), lumbar spine (LS) and femoral neck (FN) BMD and bone mineral content (BMC), and LS volumetric BMD (vBMD), reported as z scores for height. Dysglycaemia, based on oral glucose tolerance test, was defined as CF-related diabetes (CFRD) or impaired glucose tolerance (IGT). RESULTS: Overall, 14 of 81 (17%) had CFRD, 6 (7%) IGT and 61 (76%) normal glucose tolerance (NGT). Mean age was 14.9 ± 2.4 years and mean height z score -0.68 ± 1.39. Osteopenic (z score ≤-2) TB, LS or FN BMD was present in 30 of 81 (37%), BMC in 42 (52%) and vBMD in 10 (5%). Across the three groups, there were differences in LS vBMD (CFRD, -0.67 ± 0.76; IGT, -0.52 ± 0.76; NGT, -0.05 ± 1.39; P = 0.04), LS BMD (P < 0.01), LS BMC (P = 0.01) and TB BMD (P = 0.01). In multivariate linear regression, LS BMC was associated with dysglycaemia (ß = 0.56; 95% CI, 0.00-1.13; P = 0.05) and approached significance for FEV(1) (ß = 0.01; 95% CI, 0.00-0.02; P = 0.06). CONCLUSIONS: Dysglycaemia is associated with reduced bone mass accrual in youth with CF, in addition to recognized factors such as abnormal lung function, poor nutritional status and disease severity. Bone health assessment is essential in youth with CF.


Asunto(s)
Densidad Ósea/fisiología , Fibrosis Quística/metabolismo , Absorciometría de Fotón , Adolescente , Niño , Femenino , Humanos , Modelos Lineales , Masculino
14.
Phys Chem Chem Phys ; 15(13): 4573-81, 2013 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-23420035

RESUMEN

Metal-organic frameworks (MOFs) have emerged as promising materials for carbon capture applications due to their high CO2 capacities and tunable properties. Amongst the many possible MOFs, metal-substituted compounds based on M-DOBDC and M-HKUST-1 have demonstrated amongst the highest CO2 capacities at the low pressures typical of flue gasses. Here we explore the possibility for additional performance tuning of these compounds by computationally screening 36 metal-substituted variants (M = Be, Mg, Ca, Sr, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Mo, W, Sn, and Pb) with respect to their CO2 adsorption enthalpy, ΔH(T=300K). Supercell calculations based on van der Waals density functional theory (vdW-DF) yield enthalpies in good agreement with experimental measurements, out-performing semi-empirical (DFT-D2) and conventional (LDA & GGA) functionals. Our screening identifies 13 compounds having ΔH values within the targeted thermodynamic window -40 ≤ ΔH ≤ -75 kJ mol(-1): 8 are based on M-DODBC (M = Mg, Ca, Sr, Sc, Ti, V, Mo, and W), and 5 on M-HKUST-1 (M = Be, Mg, Ca, Sr and Sc). Variations in the electronic structure and the geometry of the structural building unit are examined and used to rationalize trends in CO2 affinity. In particular, the partial charge on the coordinatively unsaturated metal sites is found to correlate with ΔH, suggesting that this property may be used as a simple performance descriptor. The ability to rapidly distinguish promising MOFs from those that are "thermodynamic dead-ends" will be helpful in guiding synthesis efforts towards promising compounds.


Asunto(s)
Carbono/química , Metales/química , Compuestos Organometálicos/química , Termodinámica , Dióxido de Carbono/química , Compuestos Organometálicos/síntesis química , Teoría Cuántica
15.
J Chem Phys ; 138(20): 204702, 2013 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-23742495

RESUMEN

The behavior of water near a graphene sheet is investigated by means of ab initio and classical molecular dynamics simulations. The wetting of the graphene sheet by ab initio water and the relation of such behavior to the strength of classical dispersion interaction between surface atoms and water are explored. The first principles simulations reveal a layered solvation structure around the graphene sheet with a significant water density in the interfacial region implying no drying or cavitation effect. It is found that the ab initio results of water density at interfaces can be reproduced reasonably well by classical simulations with a tuned dispersion potential between the surface and water molecules. Calculations of vibrational power spectrum from ab initio simulations reveal a shift of the intramolecular stretch modes to higher frequencies for interfacial water molecules when compared with those of the second solvation later or bulk-like water due to the presence of free OH modes near the graphene sheet. Also, a weakening of the water-water hydrogen bonds in the vicinity of the graphene surface is found in our ab initio simulations as reflected in the shift of intermolecular vibrational modes to lower frequencies for interfacial water molecules. The first principles calculations also reveal that the residence and orientational dynamics of interfacial water are somewhat slower than those of the second layer or bulk-like molecules. However, the lateral diffusion and hydrogen bond relaxation of interfacial water molecules are found to occur at a somewhat faster rate than that of the bulk-like water molecules. The classical molecular dynamics simulations with tuned Lennard-Jones surface-water interaction are found to produce dynamical results that are qualitatively similar to those of ab initio molecular dynamics simulations.


Asunto(s)
Grafito/química , Simulación de Dinámica Molecular , Teoría Cuántica , Agua/química , Interacciones Hidrofóbicas e Hidrofílicas , Estructura Molecular
16.
Vaccines (Basel) ; 11(3)2023 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-36992108

RESUMEN

Colorectal cancer (CRC) is one of the most common cancers and is the second-highest in cancer-related deaths worldwide. The changes in gut homeostasis and microbial dysbiosis lead to the initiation of the tumorigenesis process. Several pathogenic gram-negative bacteria including Fusobacterium nucleatum are the principal contributors to the induction and pathogenesis of CRC. Thus, inhibiting the growth and survival of these pathogens can be a useful intervention strategy. Fibroblast activation protein-2 (Fap2) is an essential membrane protein of F. nucleatum that promotes the adherence of the bacterium to the colon cells, recruitment of immune cells, and induction of tumorigenesis. The present study depicts the design of an in silico vaccine candidate comprising the B-cell and T-cell epitopes of Fap2 for improving cell-mediated and humoral immune responses against CRC. Notably, this vaccine participates in significant protein-protein interactions with human Toll-like receptors, especially with TLR6 reveals, which is most likely to be correlated with its efficacy in eliciting potential immune responses. The immunogenic trait of the designed vaccine was verified by immune simulation approach. The cDNA of the vaccine construct was cloned in silico within the expression vector pET30ax for protein expression. Collectively, the proposed vaccine construct may serve as a promising therapeutic in intervening F. nucleatum-induced human CRC.

17.
J Phys Chem Lett ; 14(13): 3230-3235, 2023 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-36972468

RESUMEN

The spread of the monkeypox virus has surged during the unchecked COVID-19 epidemic. The most crucial target is the viral envelope protein, p37. However, lacking p37's crystal structure is a significant hurdle to rapid therapeutic discovery and mechanism elucidation. Structural modeling and molecular dynamics (MD) of the enzyme with inhibitors reveal a cryptic pocket occluded in the unbound structure. For the first time, the inhibitor's dynamic flip from the active to the cryptic site enlightens p37's allosteric site, which squeezes the active site, impairing its function. A large force is needed for inhibitor dissociation from the allosteric site, ushering in its biological importance. In addition, hot spot residues identified at both locations and discovered drugs more potent than tecovirimat may enable even more robust inhibitor designs against p37 and accelerate the development of monkeypox therapies.


Asunto(s)
COVID-19 , Simulación de Dinámica Molecular , Humanos , Sitio Alostérico , Dominio Catalítico , Monkeypox virus , Unión Proteica , Proteínas del Envoltorio Viral/metabolismo
18.
Int Immunopharmacol ; 115: 109639, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36586276

RESUMEN

Proteases are the critical mediators of immunomodulation exerted by the filarial parasites to bypass and divert host immunity. Cystatin is a small (∼15 kDa) immunomodulatory filarial protein and known to contribute in the immunomodulation strategy by inducing anti-inflammatory response through alternative activation of macrophages. Recently, Wuchereria bancrofti cystatin has been discovered as a ligand of human toll-like receptor 4 which is key behind the cystatin-induced anti-inflammatory response in major human antigen-presenting cells. Considering the pivotal role of cystatin in the immunobiology of filariasis, cystatin could be an efficacious target for developing vaccine. Herein, we present the design and in-silico analyses of a multi-epitope-based peptide vaccine to target W. bancrofti cystatin through immune-informatics approaches. The 262 amino acid long antigen construct comprises 9 MHC-I epitopes and MHC-II epitopes linked together by GPGPG peptide alongside an adjuvant (50S ribosomal protein L7/L12) at N terminus and 6 His tags at C terminus. Molecular docking study reveals that the peptide could trigger TLR4-MD2 to induce protective innate immune responses while the induced adaptive responses were found to be mediated by IgG, IgM and Th1 mediated responses. Notably, the designed vaccine exhibits high stability and no allergenicity in-silico. Furthermore, the muti epitope-vaccine was also predicted for its RNA structure and cloned in pET30ax for further experimental validation. Taken together, this study presents a novel multi-epitope peptide vaccine for triggering efficient innate and adaptive immune responses against W. bancrofti to intervene LF through immunotherapy.


Asunto(s)
Cistatinas , Wuchereria bancrofti , Animales , Humanos , Epítopos , Simulación del Acoplamiento Molecular , Vacunología , Vacunas de Subunidad , Péptidos , Antiinflamatorios , Biología Computacional , Epítopos de Linfocito T , Epítopos de Linfocito B
19.
J Phys Chem Lett ; 14(45): 10278-10284, 2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-37942913

RESUMEN

To date, mechanistic insights into many clinical drugs against COVID-19 remain unexplored. Dexamethasone, a corticosteroid, is one of them. While treating the entire corticosteroid database, including vitamins D2 and D3, with cutting-edge computational techniques, several intriguing results are unfolded. From the top-notch candidates, dexamethasone is likely to inhibit the viral main protease (Mpro), with vitamin D3 exhibiting multitarget [Mpro, papain-like protease (PLpro), and nucleocapsid protein (N-pro)] roles and ciclesonide's dynamic flipping disinterring a cryptic allosteric site in the PLpro enzyme. The results rationalize why these drugs improve the health of COVID-19 patients. Understanding an enzyme's secret binding site is essential to understanding how the enzyme works and how to inhibit its function. Ciclesonide's allosteric inhibition could not only jeopardize PLpro's catalytic role in polyprotein processing but also make it less vulnerable to the host body's defense machinery. Hotspot residues in the identified allosteric site could be considered for effective therapeutic designs against PLpro.


Asunto(s)
COVID-19 , Papaína , Humanos , Papaína/química , Papaína/metabolismo , Péptido Hidrolasas/metabolismo , Sitio Alostérico , SARS-CoV-2/metabolismo , Ubiquitina , Simulación de Dinámica Molecular , Sitios de Unión , Dexametasona , Antivirales/química , Inhibidores de Proteasas
20.
J Biomol Struct Dyn ; 41(16): 8068-8080, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36229234

RESUMEN

To improve rationally the efficacy of the non-nucleoside human immunodeficiency virus (HIV-1) inhibitors, it is important to have a precise and detailed understanding of the HIV-1 reverse transcriptase (RT) and inhibitor interactions. For the 1-[(2-hydroxyethoxy) methyl]-6-(phenylthio) thymine (HEPT) type of nucleoside reverse transcriptase inhibitors (NNRTIs), the H-bond between the N-3H of the inhibitor and the backbone carbonyl group of K101 represents the major hydrophilic interaction. This H-bond contributes to the NNRTI binding affinity. The descriptor analyses of different uracil derivatives proved their good cell internalization. The bioactivity score reflected higher drug likeness score and the ligands showed interesting docking results. All molecules were deeply buried and stabilized into the allosteric site of HIV-1 RT. For majority of molecules, residues Lys101, Lys103, Tyr181 and Tyr188 were identified as key protein residues responsible for generation of H-bond and major interactions were similar to all known NNRTIs while very few molecules interacted with residues Phe227 and Tyr318. The TOPKAT protocol available in Discovery Studio 3.0 was used to predict the pharmacokinetics of the designed uracil derivatives in the human body. The molecular dynamics (MD) and post-MD analyses results reflected that the complex HIVRT:5 appeared to be more stable than the complex HIVRT:HEPT, where HEPT was used as reference. Different uracil derivatives have been synthesized by using uracil as starting material and commercially available propargyl bromide. The N-1 derivative of uracil was further reacted with sodamide and different aldehydes/ketones bearing alkyl and phenyl ring to obtain hydroxyalkynyl uracil derivatives as NNRTIs.Communicated by Ramaswamy H. Sarma.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA