Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Appl Microbiol Biotechnol ; 107(17): 5439-5451, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37428187

RESUMEN

Pirin family proteins perform a variety of biological functions and widely exist in all living organisms. A few studies have shown that Pirin family proteins may be involved in the biosynthesis of antibiotics in actinomycetes. However, the function of Pirin-like proteins in S. spinosa is still unclear. In this study, the inactivation of the sspirin gene led to serious growth defects and the accumulation of H2O2. Surprisingly, the overexpression and knockout of sspirin slightly accelerated the consumption and utilization of glucose, weakened the TCA cycle, delayed sporulation, and enhanced sporulation in the later stage. In addition, the overexpression of sspirin can enhance the ß-oxidation pathway and increase the yield of spinosad by 0.88 times, while the inactivation of sspirin hardly produced spinosad. After adding MnCl2, the spinosad yield of the sspirin overexpression strain was further increased to 2.5 times that of the wild-type strain. This study preliminarily revealed the effects of Pirin-like proteins on the growth development and metabolism of S. spinosa and further expanded knowledge of Pirin-like proteins in actinomycetes. KEY POINTS: • Overexpression of the sspirin gene possibly triggers carbon catabolite repression (CCR) • Overexpression of the sspirin gene can promote the synthesis of spinosad • Knockout of the sspirin gene leads to serious growth and spinosad production defects.


Asunto(s)
Actinobacteria , Saccharopolyspora , Peróxido de Hidrógeno/metabolismo , Saccharopolyspora/metabolismo , Actinobacteria/metabolismo , Macrólidos/metabolismo , Combinación de Medicamentos
2.
J Fish Dis ; 46(1): 17-29, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36097971

RESUMEN

A new strain of Paenibacillus polymyxa S3 with antagonistic effects on 11 major fish pathogens (especially Aeromonas hydrophila), but had no toxicity to grass carp, was screened from the sediment of fishponds. In vivo colonization studies showed that strain S3 could be colonized and distributed in the gill and abdomen of the grass carp. Bioassay results showed that the weight growth rate of grass carp in the strain S3 oral group (16.01%) and strain S3 immersion group (16.44%) was significantly higher than those of the control group (8.61%). At the same time, the activities of ACP, AKP, CAT and GSH-Px in the serum of grass carp in oral and immersion groups were significantly higher than those of the control group. In addition, the treatment with strain S3 could significantly upregulate the expression of the antioxidant-related genes and immune-related genes Keap1, Nrf2, C3, LZM, IgM, TLR-4 and MyD-88 in grass carp tissues. The challenge test showed that strain S3 treatment significantly increased the survival rate of grass carp infected with Aeromonas hydrophila. Whole genome sequencing analysis showed that strain S3 had 16 active metabolite gene clusters, indicating that it had abundant gene resources, which provided important support for its development for fish microecological preparations. In summary, a new strain of Paenibacillus polymyxa S3 with antibacterial activity against a variety of fish pathogens was screened in this study and its probiotic function was evaluated, proving its potential value in fisheries.


Asunto(s)
Carpas , Enfermedades de los Peces , Paenibacillus polymyxa , Animales , Resistencia a la Enfermedad , Paenibacillus polymyxa/genética , Proteína 1 Asociada A ECH Tipo Kelch , Factor 2 Relacionado con NF-E2
3.
Microb Pathog ; 169: 105646, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35716927

RESUMEN

Aeromonas veronii AvX005 is a pathogenic bacterium with high toxicity to grass carp (Ctenopharyngodon idellus). The expression levels of g-type (goose-type lysozyme, Lys-g) and c-type lysozyme (chicken-type lysozyme, Lys-c) in the spleen of grass carp infected with AvX005 were significantly increased by approximately 4.5 times and 27 times, respectively. The recombinant proteins rLys-g and rLys-c produced in a recombinant expression system of Escherichia coli showed significant antibacterial activity against the pathogenic bacteria AvX005. A challenge test was conducted after rLys-g and rLys-c were expressed in grass carp L8824 liver cells, and compared with the survival rate of the control cells (46.3%), the survival rate of the experimental cells (77.6% for rLys-g and 68.6% for rLys-c) was significantly increased. Grass carp were infected with AvX005 on the second day after delivering pcDNA3.1-lys-g and pcDNA-lys-c with the Quil A/cholesterol/DDA/Carbopol (QCDC) adjuvant, and both pcDNA3.1-lys-g and pcDNA-lys-c provided 70% relative protection for grass carp. The activity of lysozyme and alkaline phosphatase in the serum of grass carp was significantly increased after injection of DNA. The expression of the immune factors IgM, C3 and IL8 in the kidney was upregulated to varying degrees for pcDNA3.1-lys-g and immune factors C3 and IgM was upregulated for pcDNA-lys-c. The results indicated that pcDNA3.1-lys-g and pcDNA-lys-c may be used as immunostimulants to protect grass carp from the pathogenic bacterium AvX005.


Asunto(s)
Carpas , Enfermedades de los Peces , Infecciones por Bacterias Gramnegativas , Resinas Acrílicas , Adyuvantes Inmunológicos/farmacología , Aeromonas hydrophila/fisiología , Aeromonas veronii , Animales , Carpas/metabolismo , Colesterol , Enfermedades de los Peces/microbiología , Inmunidad Innata , Inmunoglobulina M , Muramidasa/genética , Muramidasa/farmacología , Saponinas de Quillaja
4.
Microb Pathog ; 166: 105488, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35367573

RESUMEN

Many fishes infected with Pseudomonas plecoglossicida generally suffer from "visceral white spot disease" or even die. In this study, a dominant pathogen strain was isolated from the intestinal tract of diseased crucian carp in the Wangcheng Lake area, Changsha, and it was identified as P. plecoglossicida. The selected strain was a new strain named as P. plecoglossicida LQJ06.Strain LQJ06 basically colonized the intestine and poisoned zebrafish as show by fluorescent labelling. Pathological structural analysis of tissue sections indicated that the intestinal tract was seriously damaged, epithelial cells in the intestinal tissue were necrotic, intestinal villi were sloughed, liver cells were vacuolated, nuclei were pyknotic and shifted, and lymphocytes were proliferated in the spleen. P. plecoglossicida LQJ06 strain could invade and proliferate in the grass carp liver cell line L8824, which led to a stress response, including apoptosis. Cell morphology was changed owing to the toxicity of the culture supernatant of the LQJ06 strain, which mainly manifested as aggregation between cells, pyknosisd and slow growth or even death. An inactivated vaccine derived from P. plecoglossicida LQJ06 prepared in this study was safe and nontoxic to grass carp liver cells. Compared with those after oral administration, most of the cellular immune factors were expressed earlier and at a higher level after injection immunization. The intestinal tract and liver from zebrafish mainly expressed the IFN-γ2 and IL-1ß genes, respectively, after immunization. The upregulation of these immune-related genes proved that the vaccine could strengthen the immunity of zebrafish, induce inflammation and promote resistance to pathogenic infection. The results of these preliminary tests provide a scientific basis for further research on the prevention and control of P. plecoglossicida, and an essential preliminary basis for the development of an inactivated vaccine against P. plecoglossicida.


Asunto(s)
Carpas , Enfermedades de los Peces , Animales , Enfermedades de los Peces/prevención & control , Pseudomonas , Vacunas de Productos Inactivados , Virulencia , Pez Cebra
5.
Microb Cell Fact ; 21(1): 83, 2022 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-35568948

RESUMEN

BACKGROUND: Butenyl-spinosyn produced by Saccharopolyspora pogona exhibits strong insecticidal activity and a broad pesticidal spectrum. Currently, important functional genes involve in butenyl-spinosyn biosynthesis remain unknown, which leads to difficulty in efficiently understanding its regulatory mechanism, and improving its production by metabolic engineering. RESULTS: Here, we identified a TetR family transcriptional regulator, SP_2854, that can positively regulate butenyl-spinosyn biosynthesis and affect strain growth, glucose consumption, and mycelial morphology in S. pogona. Using targeted metabolomic analyses, we found that SP_2854 overexpression enhanced glucose metabolism, while SP_2854 deletion had the opposite effect. To decipher the overproduction mechanism in detail, comparative proteomic analysis was carried out in the SP-2854 overexpressing mutant and the original strain, and we found that SP_2854 overexpression promoted the expression of proteins involved in glucose metabolism. CONCLUSION: Our findings suggest that SP_2854 can affect strain growth and development and butenyl-spinosyn biosynthesis in S. pogona by controlling glucose metabolism. The strategy reported here will be valuable in paving the way for genetic engineering of regulatory elements in actinomycetes to improve important natural products production.


Asunto(s)
Proteómica , Saccharopolyspora , Transactivadores/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Glucosa/metabolismo , Macrólidos/metabolismo
6.
Microb Cell Fact ; 20(1): 141, 2021 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-34294095

RESUMEN

BACKGROUND: Acetoin utilization protein (acuC) is a type I histone deacetylase which is highly conserved in bacteria. The acuC gene is related to the acetylation/deacetylation posttranslational modification (PTM) system in S. spinosa. Spinosyns, the secondary metabolites produced by Saccharopolyspora spinosa, are the active ingredients in a family of insect control agents. However, the specific functions and influences of acuC protein in S. spinosa are yet to be characterized. RESULTS: The knockout strain and overexpression strain were constructed separately with the shuttle vector pOJ260. The production of spinosyns A and D from S. spinosa-acuC were 105.02 mg/L and 20.63 mg/L, which were 1.82-fold and 1.63-fold higher than those of the wild-type strain (57.76 mg/L and 12.64 mg/L), respectively. The production of spinosyns A and D from S. spinosa-ΔacuC were 32.78 mg/L and 10.89 mg/L, respectively. The qRT-PCR results of three selected genes (bldD, ssgA and whiA) confirmed that the overexpression of acuC affected the capacities of mycelial differentiation and sporulation. Comparative proteomics analysis was performed on these strains to investigate the underlying mechanism leading to the enhancement of spinosad yield. CONCLUSIONS: This study first systematically analysed the effects of overexpression acuC on the growth of S. spinosa and the production of spinosad. The results identify the differentially expressed proteins and provide evidences to understand the acetylation metabolic mechanisms which can lead to the increase of secondary metabolites.


Asunto(s)
Proteínas Bacterianas/genética , Macrólidos/metabolismo , Saccharopolyspora/crecimiento & desarrollo , Saccharopolyspora/genética , Acetilación , Combinación de Medicamentos , Glucosa/metabolismo , Procesamiento Proteico-Postraduccional , Proteómica , Saccharopolyspora/fisiología
7.
Microb Cell Fact ; 20(1): 157, 2021 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-34391414

RESUMEN

BACKGROUND: Butenyl-spinosyn, produced by Saccharopolyspora pogona, is a promising biopesticide due to excellent insecticidal activity and broad pesticidal spectrum. Bacterioferritin (Bfr, encoded by bfr) regulates the storage and utilization of iron, which is essential for the growth and metabolism of microorganisms. However, the effect of Bfr on the growth and butenyl-spinosyn biosynthesis in S. pogona has not been explored. RESULTS: Here, we found that the storage of intracellular iron influenced butenyl-spinosyn biosynthesis and the stress resistance of S. pogona, which was regulated by Bfr. The overexpression of bfr increased the production of butenyl-spinosyn by 3.14-fold and enhanced the tolerance of S. pogona to iron toxicity and oxidative damage, while the knockout of bfr had the opposite effects. Based on the quantitative proteomics analysis and experimental verification, the inner mechanism of these phenomena was explored. Overexpression of bfr enhanced the iron storage capacity of the strain, which activated polyketide synthase genes and enhanced the supply of acyl-CoA precursors to improve butenyl-spinosyn biosynthesis. In addition, it induced the oxidative stress response to improve the stress resistance of S. pogona. CONCLUSION: Our work reveals the role of Bfr in increasing the yield of butenyl-spinosyn and enhancing the stress resistance of S. pogona, and provides insights into its enhancement on secondary metabolism, which provides a reference for optimizing the production of secondary metabolites in actinomycetes.


Asunto(s)
Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Grupo Citocromo b/genética , Grupo Citocromo b/metabolismo , Ferritinas/genética , Ferritinas/metabolismo , Insecticidas/metabolismo , Hierro/metabolismo , Macrólidos/metabolismo , Saccharopolyspora/metabolismo , Proteínas Bacterianas/farmacología , Grupo Citocromo b/farmacología , Ferritinas/farmacología , Ingeniería Genética , Macrólidos/clasificación , Proteómica , Saccharopolyspora/efectos de los fármacos , Saccharopolyspora/genética , Saccharopolyspora/crecimiento & desarrollo
8.
Appl Microbiol Biotechnol ; 105(4): 1519-1533, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33484320

RESUMEN

Butenyl-spinosyn produced by Saccharopolyspora pogona exhibits strong insecticidal activity and broad pesticidal spectrum. However, its synthetic level was low in the wild-type strain. At present, important functional genes involved in butenyl-spinosyn biosynthesis remain unknown, which leads to difficulty in efficiently editing its genome to improve the butenyl-spinosyn yield. To accelerate the genetic modification of S. pogona, we conducted comparative proteomics analysis to screen differentially expressed proteins related to butenyl-spinosyn biosynthesis. A TetR family regulatory protein was selected from the 289 differentially expressed proteins, and its encoding gene (SP_1288) was successfully deleted by CRISPR/Cas9 system. We further deleted a 32-kb polyketide synthase gene cluster (cluster 28) to reduce the competition for precursors. Phenotypic analysis revealed that the deletion of the SP_1288 and cluster 28 resulted in a 3.10-fold increase and a 35.4% decrease in the butenyl-spinosyn levels compared with the wild-type strain, respectively. The deletion of cluster 28 affected the cell growth, glucose consumption, mycelium morphology, and sporulation by controlling the expression of ptsH, ptsI, amfC, and other genes related to sporulation, whereas SP_1288 did not. These findings confirmed not only that the CRISPR/Cas9 system can be applied to the S. pogona genome editing but also that SP_1288 and cluster 28 are closely related to the butenyl-spinosyn biosynthesis and growth development of S. pogona. The strategy reported here will be useful to reveal the regulatory mechanism of butenyl-spinosyn and improve antibiotic production in other actinomycetes. KEY POINTS: • SP_1288 deletion can significantly promote the butenyl-spinosyn biosynthesis. • Cluster 28 deletion showed pleiotropic effects on S. pogona. • SP_1288 and cluster 28 were deleted by CRISPR/Cas9 system in S. pogona.


Asunto(s)
Sintasas Poliquetidas , Saccharopolyspora , Macrólidos , Familia de Multigenes , Sintasas Poliquetidas/genética , Saccharopolyspora/genética
9.
Microb Cell Fact ; 19(1): 27, 2020 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-32046731

RESUMEN

BACKGROUND: Saccharopolyspora pogona is a prominent industrial strain due to its production of butenyl-spinosyn, a high-quality insecticide against a broad spectrum of insect pests. TetR family proteins are diverse in a tremendous number of microorganisms and some are been researched to have a key role in metabolic regulation. However, specific functions of TetR family proteins in S. pogona are yet to characterize. RESULTS: In the present study, the overexpression of the tetR-like gene sp1418 in S. pogona resulted in marked effects on vegetative growth, sporulation, butenyl-spinosyn biosynthesis, and oxidative stress. By using qRT-PCR analysis, mass spectrometry, enzyme activity detection, and sp1418 knockout verification, we showed that most of these effects could be attributed to the overexpression of Sp1418, which modulated enzymes related to the primary metabolism, oxidative stress and secondary metabolism, and thereby resulted in distinct growth characteristics and an unbalanced supply of precursor monomers for butenyl-spinosyn biosynthesis. CONCLUSION: This study revealed the function of Sp1418 and enhanced the understanding of the metabolic network in S. pogona, and provided insights into the improvement of secondary metabolite production.


Asunto(s)
Proteínas Bacterianas/metabolismo , Saccharopolyspora/crecimiento & desarrollo , Saccharopolyspora/metabolismo , Proteínas Bacterianas/genética , Regulación Bacteriana de la Expresión Génica , Ingeniería Genética , Redes y Vías Metabólicas , Saccharopolyspora/genética
10.
Appl Microbiol Biotechnol ; 102(18): 8011-8021, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29984395

RESUMEN

Polynucleotide phosphorylase is a highly conserved protein found in bacteria and fungi that can regulate the transcription of related enzymes involved in amino acid metabolism, organic acid metabolism, and cell biosynthesis. We studied the effect of polynucleotide phosphorylase on Saccharopolyspora pogona (S. pogona) growth and the synthesis of secondary metabolites. First, we generated the overexpression vector pOJ260-PermE-pnp via overlap extension PCR. The vector pOJ260-PermE-pnp was then introduced into S. pogona by conjugal transfer, thereby generating the recombination strain S. pogona-Pnp. Results showed that engineering strains possessed higher biomass than those of the wild-type strains. Moreover, the ability of these strains to produce spores on solid medium was stronger than that of the wild-type strains. HPLC results revealed that the butenyl-spinosyn yield in S. pogona-Pnp increased by 1.92-fold compared with that of S. pogona alone. These findings revealed that overexpression of polynucleotide phosphorylase effectively promoted butenyl-spinosyn biosynthesis in S. pogona. This result may be extended to other Streptomyces for strain improvement.


Asunto(s)
Proteínas Bacterianas/metabolismo , Macrólidos/metabolismo , Polirribonucleótido Nucleotidiltransferasa/metabolismo , Saccharopolyspora/enzimología , Saccharopolyspora/genética , Proteínas Bacterianas/genética , Ingeniería Metabólica , Polirribonucleótido Nucleotidiltransferasa/genética , Saccharopolyspora/crecimiento & desarrollo , Saccharopolyspora/metabolismo
11.
Microb Cell Fact ; 14: 153, 2015 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-26438125

RESUMEN

BACKGROUND: Bacillus thuringiensis X022, a novel strain isolated from soil in China, produces diamond-shaped parasporal crystals. Specific mineral nutrients, such as Mg, Cu, and Mn, influence insecticidal crystal proteins (ICP) expression and the effects of these elements vary significantly. However, the molecular mechanisms of the effects caused by mineral elements have yet to be reported. RESULTS: The ICP are mainly composed of Cry1Ca, Cry1Ac, and Cry1Da, which have molecular weights of about 130 kDa. ICP production was most efficient when Cu(2+) was added at concentrations ranging from 10(-6) to 10(-4) mol/L at an initial pH of 8.0. Addition of Cu(2+) also evidently increased the toxicity of fermentation broth to Spodoptera exigua and Helicoverpa armigera. After analyzing changes in proteome and fermentation parameters caused by Cu(2+) addition, we propose that Cu(2+) increases PhaR expression and consequently changes the carbon flow. More carbon sources was used to produce intracellular poly-ß-hydroxybutyrate (PHB). Increases in PHB as a storage material bring about increases of ICP production. CONCLUSIONS: Bacillus thuringiensis X022 mainly expresses Cry1Ca, Cry1Ac, and Cry1Da. Cu(2+) increases the expression of Cry1Da, Cry1Ca, and also enhances the toxicity of fermentation broth to S. exigua and H. armigera.


Asunto(s)
Bacillus thuringiensis/metabolismo , Proteínas Bacterianas/biosíntesis , Cobre/química , Endotoxinas/biosíntesis , Proteínas Hemolisinas/biosíntesis , Insecticidas/metabolismo , Proteómica , Animales , Bacillus thuringiensis/clasificación , Bacillus thuringiensis/genética , Toxinas de Bacillus thuringiensis , Proteínas Bacterianas/química , Proteínas Bacterianas/toxicidad , Reactores Biológicos , Carbono/química , Carbono/metabolismo , Cobre/farmacología , Endotoxinas/química , Endotoxinas/toxicidad , Proteínas Hemolisinas/química , Proteínas Hemolisinas/toxicidad , Concentración de Iones de Hidrógeno , Hidroxibutiratos/metabolismo , Insecticidas/química , Insecticidas/toxicidad , Iones/química , Peso Molecular , Mariposas Nocturnas/efectos de los fármacos , Filogenia , Poliésteres/metabolismo , Proteoma/efectos de los fármacos , ARN Ribosómico 16S/química , ARN Ribosómico 16S/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Análisis de Secuencia de ADN , Spodoptera/efectos de los fármacos
12.
Appl Microbiol Biotechnol ; 99(20): 8629-41, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26266753

RESUMEN

Saccharopolyspora spinosa can produce spinosad as a major secondary metabolite, which is an environmentally friendly agent for insect control. Cobalamin-independent methionine synthase (MetE) is an important enzyme in methionine biosynthesis, and this enzyme is probably closely related to spinosad production. In this study, its corresponding gene metE was inactivated, which resulted in a rapid growth and glucose utilisation rate and almost loss of spinosad production. A label-free quantitative proteomics-based approach was employed to obtain insights into the mechanism by which the metabolic network adapts to the absence of MetE. A total of 1440 proteins were detected from wild-type and ΔmetE mutant strains at three time points: stationary phase of ΔmetE mutant strain (S1ΔmetE , 67 h), first stationary phase of wild-type strain (S1WT, 67 h) and second stationary phase of wild-type strain (S2WT, 100 h). Protein expression patterns were determined using an exponentially modified protein abundance index (emPAI) and analysed by comparing S1ΔmetE /S1WT and S1ΔmetE /S2WT. Results showed that differentially expressed enzymes were mainly involved in primary metabolism and genetic information processing. This study demonstrated that the role of MetE is not restricted to methionine biosynthesis but rather is involved in global metabolic regulation in S. spinosa.


Asunto(s)
5-Metiltetrahidrofolato-Homocisteína S-Metiltransferasa/genética , Eliminación de Gen , Proteoma/análisis , Saccharopolyspora/enzimología , Saccharopolyspora/genética , Combinación de Medicamentos , Redes Reguladoras de Genes , Glucosa/metabolismo , Macrólidos/metabolismo , Redes y Vías Metabólicas , Saccharopolyspora/crecimiento & desarrollo , Saccharopolyspora/metabolismo
13.
Curr Microbiol ; 70(4): 457-63, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25477065

RESUMEN

Bacillus thuringiensis is a kind of insecticidal microorganism which can produce a variety of toxin proteins, it is particularly important to find an effective strategy to identify novel toxin proteins rapidly and comprehensively with the discovery of the wild-type strains. Multi-dimensional high-performance liquid chromatography combined with mass spectrometry has become one of the main methods to detect and identify toxin proteins and proteome of B. thuringiensis. In this study, protein samples from B. thuringiensis strain 4.0718 were analyzed on the basis of two-dimensional liquid chromatography-tandem mass spectrometry (2D-LC-MS/MS), and tryptic peptides of whole cell from the late sporulation phase were eluted at different concentration gradients of ammonium chloride and followed by secondary mass spectrum identification. 831 and 894 proteins were identified from two biological replicates, respectively, while 1,770 and 1,859 peptides were detected correspondingly. Among the identified proteins and peptides, 606 proteins and 1,259 peptides were detected in both replicates, which mean that 1,119 proteins and 2,370 peptides were unique to the proteome of this strain. A total of 15 toxins have been identified successfully, and seven of them were firstly discovered in B. thuringiensis strain 4.0718 that were Crystal protein (A1E259), pesticidal protein (U5KS09), Cry2Af1 (A4GVF0), Cry2Ad (Q9RM89), Cry1 (K4HMB5), Cry1Bc (Q45774), and Cry1Ga (Q45746). The proteomic strategy employed in the present study has provided quick and exhaustive identification of toxins produced by B. thuringiensis.


Asunto(s)
Bacillus thuringiensis/química , Proteínas Bacterianas/análisis , Toxinas Bacterianas/análisis , Proteómica/métodos , Cromatografía Liquida , Proteoma/análisis , Espectrometría de Masas en Tándem
14.
Microb Cell Fact ; 13(1): 27, 2014 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-24555503

RESUMEN

BACKGROUND: Saccharopolyspora spinosa is an important producer of antibiotic spinosad with clarified biosynthesis pathway but its complex regulation networks associated with primary metabolism and secondary metabolites production almost have never been concerned or studied before. The proteomic analysis of a novel Saccharopolyspora spinosa CCTCC M206084 was performed and aimed to provide a global profile of regulatory proteins. RESULTS: Two-dimensional-liquid chromatography-tandem mass spectrometry (LC-MS/MS) identified 1090, 1166, 701, and 509 proteins from four phases respectively, i.e., the logarithmic growth phase (T1), early stationary phase (T2), late stationary phase (T3), and decline phase (T4). Among the identified proteins, 1579 were unique to the S. spinosa proteome, including almost all the enzymes for spinosad biosynthesis. Trends in protein expression over the various time phases were deduced from using the modified protein abundance index (PAI), revealed the importance of stress pathway proteins and other global regulatory network proteins during spinosad biosynthesis. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis followed by one-dimensional LC-MS/MS identification revealed similar trend of protein expression from four phases with the results of semi-quantification by PAI. qRT-PCR analysis revealed that 6 different expressed genes showed a positive correlation between changes at translational and transcriptional expression level. Expression of three proteins that likely promote spinosad biosynthesis, namely, 5-methyltetrahydropteroyltriglutamate-homocysteine S-methyltransferase (MHSM), glutamine synthetase (GS) and cyclic nucleotide-binding domain-containing protein (CNDP) was validated by western blot, which confirmed the results of proteomic analysis. CONCLUSIONS: This study is the first systematic analysis of the S. spinosa proteome during fermentation and its valuable proteomic data of regulatory proteins may be used to enhance the production yield of spinosad in future studies.


Asunto(s)
Proteínas Bacterianas/metabolismo , Macrólidos/metabolismo , Proteoma/metabolismo , Saccharopolyspora/metabolismo , Proteínas Bacterianas/genética , Cromatografía Líquida de Alta Presión , Combinación de Medicamentos , Glutamato-Amoníaco Ligasa/genética , Glutamato-Amoníaco Ligasa/metabolismo , Macrólidos/química , Redes y Vías Metabólicas , Metiltransferasas/genética , Metiltransferasas/metabolismo , Proteoma/análisis , Proteómica , Saccharopolyspora/crecimiento & desarrollo , Espectrometría de Masas en Tándem
15.
Synth Syst Biotechnol ; 9(4): 809-819, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39072147

RESUMEN

Triacylglycerol (TAG) is crucial for antibiotic biosynthesis derived from Streptomyces, as it serves as an important carbon source. In this study, the supplementation of exogenous TAG led to a 3.92-fold augmentation in spinosad production. The impact of exogenous TAG on the metabolic network of Saccharopolyspora spinosa were deeply analyzed through comparative proteomics. To optimize TAG metabolism and enhance spinosad biosynthesis, the lipase-encoding genes lip886 and lip385 were overexpressed or co-expressed. The results shown that the yield of spinosad was increased by 0.8-fold and 0.4-fold when lip886 and lip385 genes were overexpressed, respectively. Synergistic co-expression of these genes resulted in a 2.29-fold increase in the yield of spinosad. Remarkably, the combined overexpression of lip886 and lip385 in the presence of exogenous TAG elevated spinosad yields by 5.5-fold, led to a drastic increase in spinosad production from 0.036 g/L to 0.234 g/L. This study underscores the modification of intracellular concentrations of free fatty acids (FFAs), short-chain acyl-CoAs, ATP, and NADPH as mechanisms by which exogenous TAG modulates spinosad biosynthesis. Overall, the findings validate the enhancement of TAG catabolism as a beneficial strategy for optimizing spinosad production and provide foundational insights for engineering secondary metabolite biosynthesis pathways in another Streptomyces.

16.
Front Microbiol ; 13: 904627, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35756073

RESUMEN

Butenyl-spinosyn, a highly effective biological insecticide, is produced by Saccharopolyspora pogona. However, its application has been severely hampered by its low yield. Recent studies have shown that PhoU plays a pivotal role in regulating cell growth, secondary metabolite biosynthesis and intracellular phosphate levels. Nevertheless, the function of PhoU remains ambiguous in S. pogona. In this study, we investigated the effects of PhoU on the growth and the butenyl-spinosyn biosynthesis of S. pogona by constructing the mutants. Overexpression of phoU increased the production of butenyl-spinosyn to 2.2-fold that of the wild-type strain. However, the phoU deletion resulted in a severe imbalance of intracellular phosphate levels, and suppression of the growth and butenyl-spinosyn biosynthesis. Quantitative Real-time PCR (qRT-PCR) analysis, distinctive protein detection and mass spectrometry revealed that PhoU widely regulated primary metabolism, energy metabolism and DNA repair, which implied that PhoU influences the growth and butenyl-spinosyn biosynthesis of S. pogona as a global regulator.

17.
J Agric Food Chem ; 70(11): 3557-3567, 2022 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-35245059

RESUMEN

Understanding the metabolism of Saccharopolyspora pogona on a global scale is essential for manipulating its metabolic capabilities to improve butenyl-spinosyn biosynthesis. Here, we combined multiomics analysis to parse S. pogona genomic information, construct a metabolic network, and mine important functional genes that affect the butenyl-spinosyn biosynthesis. This research not only elucidated the relationship between butenyl-spinosyn biosynthesis and the primary metabolic pathway but also showed that the low expression level and continuous downregulation of the bus cluster and the competitive utilization of acetyl-CoA were the main reasons for reduced butenyl-spinosyn production. Our framework identified 148 genes related to butenyl-spinosyn biosynthesis that were significantly differentially expressed, confirming that butenyl-spinosyn polyketide synthase (PKS) and succinic semialdehyde dehydrogenase (GabD) play an important role in regulating butenyl-spinosyn biosynthesis. Combined modification of these genes increased overall butenyl-spinosyn production by 6.38-fold to 154.1 ± 10.98 mg/L. Our results provide an important strategy for further promoting the butenyl-spinosyn titer.


Asunto(s)
Macrólidos , Saccharopolyspora , Proteínas Bacterianas/metabolismo , Macrólidos/metabolismo , Redes y Vías Metabólicas/genética , Saccharopolyspora/genética , Saccharopolyspora/metabolismo
18.
ACS Synth Biol ; 10(10): 2740-2752, 2021 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-34601869

RESUMEN

Reduction and optimization of the microbial genome is an important strategy for constructing synthetic biological chassis cells and overcoming obstacles in natural product discovery and production. However, it is of great challenge to discover target genes that can be deleted and optimized due to the complicated genome of actinomycetes. Saccharopolyspora pogona can produce butenyl-spinosyn during aerobic fermentation, and its genome contains 32 different gene clusters. This suggests that there is a large amount of potential competitive metabolism in S. pogona, which affects the biosynthesis of butenyl-spinosyn. By analyzing the genome of S. pogona, six polyketide gene clusters were identified. From those, the complete deletion of clu13, a flaviolin-like gene cluster, generated a high butenyl-spinosyn-producing strain. Production of this strain was 4.06-fold higher than that of the wildtype strain. Transcriptome profiling revealed that butenyl-spinosyn biosynthesis was not primarily induced by the polyketide synthase RppA-like but was related to hypothetical protein Sp1764. However, the repression of sp1764 was not enough to explain the enormous enhancement of butenyl-spinosyn yields in S. pogona-Δclu13. After the comparative proteomic analysis of S. pogona-Δclu13 and S. pogona, two proteins, biotin carboxyl carrier protein (BccA) and response regulator (Reg), were investigated, whose overexpression led to great advantages of butenyl-spinosyn biosynthesis. In this way, we successfully discovered three key genes that obviously optimize the biosynthesis of butenyl-spinosyn. Gene cluster simplification performed in conjunction with multiomics analysis is of great practical significance for screening dominant chassis strains and optimizing secondary metabolism. This work provided an idea about screening key factors and efficient construction of production strains.


Asunto(s)
Eliminación de Gen , Familia de Multigenes , Naftoquinonas/química , Saccharopolyspora/genética , Saccharopolyspora/metabolismo
19.
J Agric Food Chem ; 69(42): 12554-12565, 2021 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-34657420

RESUMEN

Butenyl-spinosyn is a highly effective and broad-spectrum biopesticide produced by Saccharopolyspora pogona. However, the yield of this compound is difficult to increase because the regulatory mechanism of secondary metabolism is still unknown. Here, the transcriptional regulator Sp13016 was discovered to be highly associated with butenyl-spinosyn synthesis and bacterial growth. Overexpression of sp13016 improved butenyl-spinosyn production to a level that was 2.84-fold that of the original strain, while deletion of sp13016 resulted in a significant decrease in yield and growth inhibition. Comparative proteomics revealed that these phenotypic changes were attributed to the influence of Sp13016 on the central carbon metabolism pathway to regulate the supply of precursors. Our research helps to reveal the regulatory mechanism of butenyl-spinosyn biosynthesis and provides a reference for increasing the yield of natural products of Actinomycetes.


Asunto(s)
Proteómica , Saccharopolyspora , Proteínas Bacterianas/genética , Macrólidos , Saccharopolyspora/genética
20.
Microb Biotechnol ; 14(6): 2369-2384, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-33128503

RESUMEN

Butenyl-spinosyn, a promising biopesticide produced by Saccharopolyspora pogona, exhibits stronger insecticidal activity and a broader pesticidal spectrum. However, its titre in the wild-type S. pogona strain is too low to meet the industrial production requirements. Deletion of non-target natural product biosynthetic gene clusters resident in the genome of S. pogona could reduce the consumption of synthetic precursors, thereby promoting the biosynthesis of butenyl-spinosyn. However, it has always been a challenge for scientists to genetically engineer S. pogona. In this study, the Latour gene knockout system (linear DNA fragment recombineering system) was established in S. pogona. Using the Latour system, a hybrid NRPS-T1PKS cluster (˜20 kb) which was responsible for phthoxazolin biosynthesis was efficiently deleted in S. pogona. The resultant mutant S. pogona-Δura4-Δc14 exhibited an extended logarithmic phase, increased biomass and a lower glucose consumption rate. Importantly, the production of butenyl-spinosyn in S. pogona-Δura4-Δc14 was increased by 4.72-fold compared with that in the wild-type strain. qRT-PCR analysis revealed that phthoxazolin biosynthetic gene cluster deletion could promote the expression of the butenyl-spinosyn biosynthetic gene cluster. Furthermore, a TetR family transcriptional regulatory gene that could regulate the butenyl-spinosyn biosynthesis has been identified from the phthoxazolin biosynthetic gene cluster. Because dozens of natural product biosynthetic gene clusters exist in the genome of S. pogona, the strategy reported here will be used to further promote the production of butenyl-spinosyn by deleting other secondary metabolite synthetic gene clusters.


Asunto(s)
Macrólidos , Saccharopolyspora , Proteínas Bacterianas/genética , Técnicas de Inactivación de Genes , Familia de Multigenes , Saccharopolyspora/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA