Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
bioRxiv ; 2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36945388

RESUMEN

Transcriptome evaluation of Mycobacterium tuberculosis in the lungs of laboratory animals during long-term treatment has been limited by extremely low abundance of bacterial mRNA relative to eukaryotic RNA. Here we report a targeted amplification RNA sequencing method called SEARCH-TB. After confirming that SEARCH-TB recapitulates conventional RNA-seq in vitro, we applied SEARCH-TB to Mycobacterium tuberculosis-infected BALB/c mice treated for up to 28 days with the global standard isoniazid, rifampin, pyrazinamide, and ethambutol regimen. We compared results in mice with 8-day exposure to the same regimen in vitro. After treatment of mice for 28 days, SEARCH-TB suggested broad suppression of genes associated with bacterial growth, transcription, translation, synthesis of rRNA proteins and immunogenic secretory peptides. Adaptation of drug-stressed Mycobacterium tuberculosis appeared to include a metabolic transition from ATP-maximizing respiration towards lower-efficiency pathways, modification and recycling of cell wall components, large-scale regulatory reprogramming, and reconfiguration of efflux pumps expression. Despite markedly different expression at pre-treatment baseline, murine and in vitro samples had broadly similar transcriptional change during treatment. The differences observed likely indicate the importance of immunity and pharmacokinetics in the mouse. By elucidating the long-term effect of tuberculosis treatment on bacterial cellular processes in vivo, SEARCH-TB represents a highly granular pharmacodynamic monitoring tool with potential to enhance evaluation of new regimens and thereby accelerate progress towards a new generation of more effective tuberculosis treatment.

2.
mBio ; : e0236323, 2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37905920

RESUMEN

To address the ongoing global tuberculosis crisis, there is a need for shorter, more effective treatments. A major reason why tuberculosis requires prolonged treatment is that, following a short initial phase of rapid killing, the residual Mycobacterium tuberculosis withstands drug killing. Because existing methods lack sensitivity to quantify low-abundance mycobacterial RNA in drug-treated animals, cellular adaptations of drug-exposed bacterial phenotypes in vivo remain poorly understood. Here, we used a novel RNA-seq method called SEARCH-TB to elucidate the Mycobacterium tuberculosis transcriptome in mice treated for up to 28 days with standard doses of isoniazid, rifampin, pyrazinamide, and ethambutol. We compared murine results with in vitro SEARCH-TB results during exposure to the same regimen. Treatment suppressed genes associated with growth, transcription, translation, synthesis of rRNA proteins, and immunogenic secretory peptides. Bacteria that survived prolonged treatment appeared to transition from ATP-maximizing respiration toward lower-efficiency pathways and showed modification and recycling of cell wall components, large-scale regulatory reprogramming, and reconfiguration of efflux pump expression. Although the pre-treatment in vivo and in vitro transcriptomes differed profoundly, genes differentially expressed following treatment in vivo and in vitro were similar, with differences likely attributable to immunity and drug pharmacokinetics in mice. These results reveal cellular adaptations of Mycobacterium tuberculosis that withstand prolonged drug exposure in vivo, demonstrating proof of concept that SEARCH-TB is a highly granular pharmacodynamic readout. The surprising finding that differential expression is concordant in vivo and in vitro suggests that insights from transcriptional analyses in vitro may translate to the mouse. IMPORTANCE A major reason that curing tuberculosis requires prolonged treatment is that drug exposure changes bacterial phenotypes. The physiologic adaptations of Mycobacterium tuberculosis that survive drug exposure in vivo have been obscure due to low sensitivity of existing methods in drug-treated animals. Using the novel SEARCH-TB RNA-seq platform, we elucidated Mycobacterium tuberculosis phenotypes in mice treated for with the global standard 4-drug regimen and compared them with the effect of the same regimen in vitro. This first view of the transcriptome of the minority Mycobacterium tuberculosis population that withstands treatment in vivo reveals adaptation of a broad range of cellular processes, including a shift in metabolism and cell wall modification. Surprisingly, the change in gene expression induced by treatment in vivo and in vitro was largely similar. This apparent "portability" from in vitro to the mouse provides important new context for in vitro transcriptional analyses that may support early preclinical drug evaluation.

3.
mBio ; 11(6)2020 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-33173000

RESUMEN

Nutritional immunity is an elegant host mechanism used to starve invading pathogens of necessary nutrient metals. Calprotectin, a metal-binding protein, is produced abundantly by neutrophils and is found in high concentrations within inflammatory sites during infection. Group B Streptococcus (GBS) colonizes the gastrointestinal and female reproductive tracts and is commonly associated with severe invasive infections in newborns such as pneumonia, sepsis, and meningitis. Although GBS infections induce robust neutrophil recruitment and inflammation, the dynamics of GBS and calprotectin interactions remain unknown. Here, we demonstrate that disease and colonizing isolate strains exhibit susceptibility to metal starvation by calprotectin. We constructed a mariner transposon (Krmit) mutant library in GBS and identified 258 genes that contribute to surviving calprotectin stress. Nearly 20% of all underrepresented mutants following treatment with calprotectin are predicted metal transporters, including known zinc systems. As calprotectin binds zinc with picomolar affinity, we investigated the contribution of GBS zinc uptake to overcoming calprotectin-imposed starvation. Quantitative reverse transcriptase PCR (qRT-PCR) revealed a significant upregulation of genes encoding zinc-binding proteins, adcA, adcAII, and lmb, following calprotectin exposure, while growth in calprotectin revealed a significant defect for a global zinc acquisition mutant (ΔadcAΔadcAIIΔlmb) compared to growth of the GBS wild-type (WT) strain. Furthermore, mice challenged with the ΔadcAΔadcAIIΔlmb mutant exhibited decreased mortality and significantly reduced bacterial burden in the brain compared to mice infected with WT GBS; this difference was abrogated in calprotectin knockout mice. Collectively, these data suggest that GBS zinc transport machinery is important for combatting zinc chelation by calprotectin and establishing invasive disease.IMPORTANCE Group B Streptococcus (GBS) asymptomatically colonizes the female reproductive tract but is a common causative agent of meningitis. GBS meningitis is characterized by extensive infiltration of neutrophils carrying high concentrations of calprotectin, a metal chelator. To persist within inflammatory sites and cause invasive disease, GBS must circumvent host starvation attempts. Here, we identified global requirements for GBS survival during calprotectin challenge, including known and putative systems involved in metal ion transport. We characterized the role of zinc import in tolerating calprotectin stress in vitro and in a mouse model of infection. We observed that a global zinc uptake mutant was less virulent than the parental GBS strain and found calprotectin knockout mice to be equally susceptible to infection by wild-type (WT) and mutant strains. These findings suggest that calprotectin production at the site of infection results in a zinc-limited environment and reveals the importance of GBS metal homeostasis to invasive disease.


Asunto(s)
Complejo de Antígeno L1 de Leucocito/metabolismo , Infecciones Estreptocócicas/metabolismo , Streptococcus agalactiae/metabolismo , Zinc/metabolismo , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Femenino , Humanos , Complejo de Antígeno L1 de Leucocito/genética , Meningitis Bacterianas/genética , Meningitis Bacterianas/metabolismo , Meningitis Bacterianas/microbiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neutrófilos/metabolismo , Infecciones Estreptocócicas/genética , Infecciones Estreptocócicas/microbiología , Streptococcus agalactiae/genética , Streptococcus agalactiae/crecimiento & desarrollo , Streptococcus agalactiae/patogenicidad , Virulencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA