Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Cell ; 164(3): 550-63, 2016 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-26824661

RESUMEN

Therapy development for adult diffuse glioma is hindered by incomplete knowledge of somatic glioma driving alterations and suboptimal disease classification. We defined the complete set of genes associated with 1,122 diffuse grade II-III-IV gliomas from The Cancer Genome Atlas and used molecular profiles to improve disease classification, identify molecular correlations, and provide insights into the progression from low- to high-grade disease. Whole-genome sequencing data analysis determined that ATRX but not TERT promoter mutations are associated with increased telomere length. Recent advances in glioma classification based on IDH mutation and 1p/19q co-deletion status were recapitulated through analysis of DNA methylation profiles, which identified clinically relevant molecular subsets. A subtype of IDH mutant glioma was associated with DNA demethylation and poor outcome; a group of IDH-wild-type diffuse glioma showed molecular similarity to pilocytic astrocytoma and relatively favorable survival. Understanding of cohesive disease groups may aid improved clinical outcomes.


Asunto(s)
Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Glioma/genética , Glioma/patología , Transcriptoma , Adulto , Neoplasias Encefálicas/metabolismo , Proliferación Celular , Análisis por Conglomerados , ADN Helicasas/genética , Metilación de ADN , Epigénesis Genética , Glioma/metabolismo , Humanos , Isocitrato Deshidrogenasa/genética , Persona de Mediana Edad , Mutación , Proteínas Nucleares/genética , Regiones Promotoras Genéticas , Transducción de Señal , Telomerasa/genética , Telómero , Proteína Nuclear Ligada al Cromosoma X
2.
Nat Methods ; 17(8): 833-843, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32632238

RESUMEN

Spatial transcriptomics seeks to integrate single cell transcriptomic data within the three-dimensional space of multicellular biology. Current methods to correlate a cell's position with its transcriptome in living tissues have various limitations. We developed an approach, called 'ZipSeq', that uses patterned illumination and photocaged oligonucleotides to serially print barcodes ('zipcodes') onto live cells in intact tissues, in real time and with an on-the-fly selection of patterns. Using ZipSeq, we mapped gene expression in three settings: in vitro wound healing, live lymph node sections and a live tumor microenvironment. In all cases, we discovered new gene expression patterns associated with histological structures. In the tumor microenvironment, this demonstrated a trajectory of myeloid and T cell differentiation from the periphery inward. A combinatorial variation of ZipSeq efficiently scales in the number of regions defined, providing a pathway for complete mapping of live tissues, subsequent to real-time imaging or perturbation.


Asunto(s)
Código de Barras del ADN Taxonómico/métodos , Análisis de la Célula Individual/métodos , Transcriptoma/genética , Animales , Biología Computacional , Regulación de la Expresión Génica , Ganglios Linfáticos , Ratones , Células 3T3 NIH , Linfocitos T , Microambiente Tumoral
3.
BMC Bioinformatics ; 15: 40, 2014 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-24495296

RESUMEN

BACKGROUND: The rapid advancements in the field of genome sequencing are aiding our understanding on many biological systems. In the last five years, computational biologists and bioinformatics specialists have come up with newer, better and more efficient tools towards the discovery, analysis and interpretation of different genomic variants from high-throughput sequencing data. Availability of reliable simulated dataset is essential and is the first step towards testing any newly developed analytical tools for variant discovery. Although there are tools currently available that can simulate variants, none present the possibility of simulating all the three major types of variations (Single Nucleotide Polymorphisms, Insertions and Deletions and Copy Number Variations) and can generate reads taking a realistic error-model into consideration. Therefore, an efficient simulator and read generator is needed that can simulate variants taking the error rates of true biological samples into consideration. RESULTS: We report SInC (Snp, Indel and Cnv) an open-source variant simulator and read generator capable of simulating all the three common types of biological variants taking into account a distribution of base quality score from a most commonly used next-generation sequencing instrument from Illumina. SInC is capable of generating single- and paired-end reads with user-defined insert size and with high efficiency compared to the other existing tools. SInC, due to its multi-threaded capability during read generation, has a low time footprint. SInC is currently optimised to work in limited infrastructure setup and can efficiently exploit the commonly used quad-core desktop architecture to simulate short sequence reads with deep coverage for large genomes. CONCLUSIONS: We have come up with a user-friendly multi-variant simulator and read-generator tools called SInC. SInC can be downloaded from http://sourceforge.net/projects/sincsimulator.


Asunto(s)
Genómica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Mutación INDEL/genética , Polimorfismo Genético/genética , Análisis de Secuencia de ADN/métodos , Programas Informáticos , Simulación por Computador , Bases de Datos Genéticas , Genoma/genética
4.
J Immunother Cancer ; 12(4)2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38642938

RESUMEN

BACKGROUND: Colitis caused by checkpoint inhibitors (CPI) is frequent and is treated with empiric steroids, but CPI colitis mechanisms in steroid-experienced or refractory disease are unclear. METHODS: Using colon biopsies and blood from predominantly steroid-experienced CPI colitis patients, we performed multiplexed single-cell transcriptomics and proteomics to nominate contributing populations. RESULTS: CPI colitis biopsies showed enrichment of CD4+resident memory (RM) T cells in addition to CD8+ RM and cytotoxic CD8+ T cells. Matching T cell receptor (TCR) clonotypes suggested that both RMs are progenitors that yield cytotoxic effectors. Activated, CD38+ HLA-DR+ CD4+ RM and cytotoxic CD8+ T cells were enriched in steroid-experienced and a validation data set of steroid-naïve CPI colitis, underscoring their pathogenic potential across steroid exposure. Distinct from ulcerative colitis, CPI colitis exhibited perturbed stromal metabolism (NAD+, tryptophan) impacting epithelial survival and inflammation. Endothelial cells in CPI colitis after anti-TNF and anti-cytotoxic T-lymphocyte-associated antigen 4 (anti-CTLA-4) upregulated the integrin α4ß7 ligand molecular vascular addressin cell adhesion molecule 1 (MAdCAM-1), which may preferentially respond to vedolizumab (anti-α4ß7). CONCLUSIONS: These findings nominate CD4+ RM and MAdCAM-1+ endothelial cells for targeting in specific subsets of CPI colitis patients.


Asunto(s)
Linfocitos T CD8-positivos , Colitis , Humanos , Células Endoteliales , Inhibidores del Factor de Necrosis Tumoral , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Linfocitos T CD4-Positivos , Esteroides/farmacología , Esteroides/uso terapéutico , Células del Estroma
5.
bioRxiv ; 2023 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-36945648

RESUMEN

In the past decade, high-dimensional single cell technologies have revolutionized basic and translational immunology research and are now a key element of the toolbox used by scientists to study the immune system. However, analysis of the data generated by these approaches often requires clustering algorithms and dimensionality reduction representation which are computationally intense and difficult to evaluate and optimize. Here we present Cyclone, an analysis pipeline integrating dimensionality reduction, clustering, evaluation and optimization of clustering resolution, and downstream visualization tools facilitating the analysis of a wide range of cytometry data. We benchmarked and validated Cyclone on mass cytometry (CyTOF), full spectrum fluorescence-based cytometry, and multiplexed immunofluorescence (IF) in a variety of biological contexts, including infectious diseases and cancer. In each instance, Cyclone not only recapitulates gold standard immune cell identification, but also enables the unsupervised identification of lymphocytes and mononuclear phagocytes subsets that are associated with distinct biological features. Altogether, the Cyclone pipeline is a versatile and accessible pipeline for performing, optimizing, and evaluating clustering on variety of cytometry datasets which will further power immunology research and provide a scaffold for biological discovery.

6.
Front Immunol ; 14: 1167241, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37731497

RESUMEN

In the past decade, high-dimensional single-cell technologies have revolutionized basic and translational immunology research and are now a key element of the toolbox used by scientists to study the immune system. However, analysis of the data generated by these approaches often requires clustering algorithms and dimensionality reduction representation, which are computationally intense and difficult to evaluate and optimize. Here, we present Cytometry Clustering Optimization and Evaluation (Cyclone), an analysis pipeline integrating dimensionality reduction, clustering, evaluation, and optimization of clustering resolution, and downstream visualization tools facilitating the analysis of a wide range of cytometry data. We benchmarked and validated Cyclone on mass cytometry (CyTOF), full-spectrum fluorescence-based cytometry, and multiplexed immunofluorescence (IF) in a variety of biological contexts, including infectious diseases and cancer. In each instance, Cyclone not only recapitulates gold standard immune cell identification but also enables the unsupervised identification of lymphocytes and mononuclear phagocyte subsets that are associated with distinct biological features. Altogether, the Cyclone pipeline is a versatile and accessible pipeline for performing, optimizing, and evaluating clustering on a variety of cytometry datasets, which will further power immunology research and provide a scaffold for biological discovery.


Asunto(s)
Tormentas Ciclónicas , Algoritmos , Benchmarking , Análisis por Conglomerados , Tecnología
7.
Cancer Immunol Res ; 10(4): 403-419, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35181780

RESUMEN

The tumor immune microenvironment (TIME) is commonly infiltrated by diverse collections of myeloid cells. Yet, the complexity of myeloid-cell identity and plasticity has challenged efforts to define bona fide populations and determine their connections to T-cell function and their relationship to patient outcome. Here, we have leveraged single-cell RNA-sequencing analysis of several mouse and human tumors and found that monocyte-macrophage diversity is characterized by a combination of conserved lineage states as well as transcriptional programs accessed along the differentiation trajectory. We also found in mouse models that tumor monocyte-to-macrophage progression was profoundly tied to regulatory T cell (Treg) abundance. In human kidney cancer, heterogeneity in macrophage accumulation and myeloid composition corresponded to variance in, not only Treg density, but also the quality of infiltrating CD8+ T cells. In this way, holistic analysis of monocyte-to-macrophage differentiation creates a framework for critically different immune states.


Asunto(s)
Neoplasias Renales , Monocitos , Animales , Macrófagos , Ratones , Fenotipo , Microambiente Tumoral
8.
Res Sq ; 2022 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-35611333

RESUMEN

In the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic1, considerable focus has been placed on a model of viral entry into host epithelial populations, with a separate focus upon the responding immune system dysfunction that exacerbates or causes disease. We developed a precision-cut lung slice model2,3 to investigate very early host-viral pathogenesis and found that SARS-CoV-2 had a rapid and specific tropism for myeloid populations in the human lung. Infection of alveolar macrophages was partially dependent upon their expression of ACE2, and the infections were productive for amplifying virus, both findings which were in contrast with their neutralization of another pandemic virus, Influenza A virus (IAV). Compared to IAV, SARS-CoV-2 was extremely poor at inducing interferon-stimulated genes in infected myeloid cells, providing a window of opportunity for modest titers to amplify within these cells. Endotracheal aspirate samples from humans with the acute respiratory distress syndrome (ARDS) from COVID-19 confirmed the lung slice findings, revealing a persistent myeloid depot. In the early phase of SARS-CoV-2 infection, myeloid cells may provide a safe harbor for the virus with minimal immune stimulatory cues being generated, resulting in effective viral colonization and quenching of the immune system.

9.
bioRxiv ; 2022 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-35592107

RESUMEN

In the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic, considerable focus has been placed on a model of viral entry into host epithelial populations, with a separate focus upon the responding immune system dysfunction that exacerbates or causes disease. We developed a precision-cut lung slice model to investigate very early host-viral pathogenesis and found that SARS-CoV-2 had a rapid and specific tropism for myeloid populations in the human lung. Infection of alveolar macrophages was partially dependent upon their expression of ACE2, and the infections were productive for amplifying virus, both findings which were in contrast with their neutralization of another pandemic virus, Influenza A virus (IAV). Compared to IAV, SARS-CoV-2 was extremely poor at inducing interferon-stimulated genes in infected myeloid cells, providing a window of opportunity for modest titers to amplify within these cells. Endotracheal aspirate samples from humans with the acute respiratory distress syndrome (ARDS) from COVID-19 confirmed the lung slice findings, revealing a persistent myeloid depot. In the early phase of SARS-CoV-2 infection, myeloid cells may provide a safe harbor for the virus with minimal immune stimulatory cues being generated, resulting in effective viral colonization and quenching of the immune system.

10.
Sci Rep ; 11(1): 23690, 2021 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-34880292

RESUMEN

Although surgery for early-stage lung cancer offers the best chance of cure, recurrence still occurs between 30 and 50% of the time. Why patients frequently recur after complete resection of early-stage lung cancer remains unclear. Using a large cohort of stage I lung adenocarcinoma patients, distinct genetic, genomic, epigenetic, and immunologic profiles of recurrent tumors were analyzed using a novel recurrence classifier. To characterize the tumor immune microenvironment of recurrent stage I tumors, unique tumor-infiltrating immune population markers were identified using single cell RNA-seq on a separate cohort of patients undergoing stage I lung adenocarcinoma resection and applied to a large study cohort using digital cytometry. Recurrent stage I lung adenocarcinomas demonstrated higher mutation and lower methylation burden than non-recurrent tumors, as well as widespread activation of known cancer and cell cycle pathways. Simultaneously, recurrent tumors displayed downregulation of immune response pathways including antigen presentation and Th1/Th2 activation. Recurrent tumors were depleted in adaptive immune populations, and depletion of adaptive immune populations and low cytolytic activity were prognostic of stage I recurrence. Genomic instability and impaired adaptive immune responses are key features of stage I lung adenocarcinoma immunosurveillance escape and recurrence after surgery.


Asunto(s)
Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/inmunología , Biomarcadores de Tumor , Adenocarcinoma del Pulmón/diagnóstico , Biología Computacional/métodos , Susceptibilidad a Enfermedades , Epigénesis Genética , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Variación Genética , Humanos , Masculino , Mutación , Recurrencia Local de Neoplasia , Estadificación de Neoplasias , Pronóstico , Modelos de Riesgos Proporcionales , Microambiente Tumoral/genética
11.
Elife ; 102021 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-34009124

RESUMEN

To study disease development, an inventory of an organ's cell types and understanding of physiologic function is paramount. Here, we performed single-cell RNA-sequencing to examine heterogeneity of murine pancreatic duct cells, pancreatobiliary cells, and intrapancreatic bile duct cells. We describe an epithelial-mesenchymal transitory axis in our three pancreatic duct subpopulations and identify osteopontin as a regulator of this fate decision as well as human duct cell dedifferentiation. Our results further identify functional heterogeneity within pancreatic duct subpopulations by elucidating a role for geminin in accumulation of DNA damage in the setting of chronic pancreatitis. Our findings implicate diverse functional roles for subpopulations of pancreatic duct cells in maintenance of duct cell identity and disease progression and establish a comprehensive road map of murine pancreatic duct cell, pancreatobiliary cell, and intrapancreatic bile duct cell homeostasis.


Asunto(s)
Perfilación de la Expresión Génica , Heterogeneidad Genética , Conductos Pancreáticos/citología , Análisis de la Célula Individual , Transcriptoma , Animales , Línea Celular , Separación Celular , Daño del ADN , Bases de Datos Genéticas , Modelos Animales de Enfermedad , Transición Epitelial-Mesenquimal , Femenino , Geminina/genética , Geminina/metabolismo , Regulación del Desarrollo de la Expresión Génica , Humanos , Ratones Endogámicos C57BL , Ratones Transgénicos , Morfogénesis , Osteopontina/genética , Osteopontina/metabolismo , Conductos Pancreáticos/metabolismo , Pancreatitis Crónica/genética , Pancreatitis Crónica/metabolismo , Pancreatitis Crónica/patología , Fenotipo , RNA-Seq
12.
Blood Cancer Discov ; 2(5): 434-449, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34514432

RESUMEN

Acute myeloid leukemia patients refractory to induction therapy or relapsed within one year have poor outcomes. Autocrine production of hepatocyte growth factor by myeloid blasts drives leukemogenesis in pre-clinical models. A phase Ib trial evaluated ficlatuzumab, a first-in-class anti-HGF antibody, in combination with cytarabine in this high-risk population. Dose-limiting toxicities were not observed, and 20 mg/kg was established as the recommended phase II dose. The most frequent treatment-related adverse event was febrile neutropenia. Among 17 evaluable patients, the overall response rate was 53%, all complete remissions. Phospho-proteomic mass cytometry showed potent on-target suppression of p-MET after ficlatuzumab treatment and that attenuation of p-S6 was associated with clinical response. Multiplexed single cell RNA sequencing using prospectively acquired patient specimens identified interferon response genes as adverse predictive factors. The ficlatuzumab and cytarabine combination is well-tolerated with favorable efficacy. High-dimensional analyses at single-cell resolution represent promising approaches for identifying biomarkers of response and mechanisms of resistance in prospective clinical studies.


Asunto(s)
Leucemia Mieloide Aguda , Proteómica , Anticuerpos Monoclonales , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Humanos , Leucemia Mieloide Aguda/tratamiento farmacológico , Estudios Prospectivos
13.
Front Immunol ; 11: 483296, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33244314

RESUMEN

Somatic mutations in cancers affecting protein coding genes can give rise to potentially therapeutic neoepitopes. These neoepitopes can guide Adoptive Cell Therapies and Peptide- and RNA-based Neoepitope Vaccines to selectively target tumor cells using autologous patient cytotoxic T-cells. Currently, researchers have to independently align their data, call somatic mutations and haplotype the patient's HLA to use existing neoepitope prediction tools. We present ProTECT, a fully automated, reproducible, scalable, and efficient end-to-end analysis pipeline to identify and rank therapeutically relevant tumor neoepitopes in terms of potential immunogenicity starting directly from raw patient sequencing data, or from pre-processed data. The ProTECT pipeline encompasses alignment, HLA haplotyping, mutation calling (single nucleotide variants, short insertions and deletions, and gene fusions), peptide:MHC binding prediction, and ranking of final candidates. We demonstrate the scalability, efficiency, and utility of ProTECT on 326 samples from the TCGA Prostate Adenocarcinoma cohort, identifying recurrent potential neoepitopes from TMPRSS2-ERG fusions, and from SNVs in SPOP. We also compare ProTECT with results from published tools. ProTECT can be run on a standalone computer, a local cluster, or on a compute cloud using a Mesos backend. ProTECT is highly scalable and can process TCGA data in under 30 min per sample (on average) when run in large batches. ProTECT is freely available at https://www.github.com/BD2KGenomics/protect.


Asunto(s)
Antígenos de Neoplasias , Epítopos de Linfocito T , Inmunoterapia , Neoplasias , Programas Informáticos , Linfocitos T Citotóxicos/inmunología , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/inmunología , Epítopos de Linfocito T/genética , Epítopos de Linfocito T/inmunología , Humanos , Neoplasias/genética , Neoplasias/inmunología , Neoplasias/terapia , Valor Predictivo de las Pruebas
14.
Front Immunol ; 9: 99, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29441070

RESUMEN

The identification of recurrent human leukocyte antigen (HLA) neoepitopes driving T cell responses against tumors poses a significant bottleneck in the development of approaches for precision cancer therapeutics. Here, we employ a bioinformatics method, Prediction of T Cell Epitopes for Cancer Therapy, to analyze sequencing data from neuroblastoma patients and identify a recurrent anaplastic lymphoma kinase mutation (ALK R1275Q) that leads to two high affinity neoepitopes when expressed in complex with common HLA alleles. Analysis of the X-ray structures of the two peptides bound to HLA-B*15:01 reveals drastically different conformations with measurable changes in the stability of the protein complexes, while the self-epitope is excluded from binding due to steric hindrance in the MHC groove. To evaluate the range of HLA alleles that could display the ALK neoepitopes, we used structure-based Rosetta comparative modeling calculations, which accurately predict several additional high affinity interactions and compare our results with commonly used prediction tools. Subsequent determination of the X-ray structure of an HLA-A*01:01 bound neoepitope validates atomic features seen in our Rosetta models with respect to key residues relevant for MHC stability and T cell receptor recognition. Finally, MHC tetramer staining of peripheral blood mononuclear cells from HLA-matched donors shows that the two neoepitopes are recognized by CD8+ T cells. This work provides a rational approach toward high-throughput identification and further optimization of putative neoantigen/HLA targets with desired recognition features for cancer immunotherapy.


Asunto(s)
Quinasa de Linfoma Anaplásico/genética , Quinasa de Linfoma Anaplásico/inmunología , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/inmunología , Epítopos/genética , Epítopos/inmunología , Mutación , Alelos , Secuencia de Aminoácidos , Quinasa de Linfoma Anaplásico/metabolismo , Antígenos de Neoplasias/metabolismo , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Biología Computacional/métodos , Epítopos/química , Epítopos de Linfocito T/química , Epítopos de Linfocito T/genética , Epítopos de Linfocito T/inmunología , Antígenos de Histocompatibilidad Clase I/química , Antígenos de Histocompatibilidad Clase I/inmunología , Antígenos de Histocompatibilidad Clase I/metabolismo , Humanos , Modelos Moleculares , Péptidos/genética , Péptidos/inmunología , Péptidos/metabolismo , Conformación Proteica , Multimerización de Proteína , Relación Estructura-Actividad
16.
PLoS One ; 7(10): e47812, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23110103

RESUMEN

Copy Number Alterations (CNAs) such as deletions and duplications; compose a larger percentage of genetic variations than single nucleotide polymorphisms or other structural variations in cancer genomes that undergo major chromosomal re-arrangements. It is, therefore, imperative to identify cancer-specific somatic copy number alterations (SCNAs), with respect to matched normal tissue, in order to understand their association with the disease. We have devised an accurate, sensitive, and easy-to-use tool, COPS, COpy number using Paired Samples, for detecting SCNAs. We rigorously tested the performance of COPS using short sequence simulated reads at various sizes and coverage of SCNAs, read depths, read lengths and also with real tumor:normal paired samples. We found COPS to perform better in comparison to other known SCNA detection tools for all evaluated parameters, namely, sensitivity (detection of true positives), specificity (detection of false positives) and size accuracy. COPS performed well for sequencing reads of all lengths when used with most upstream read alignment tools. Additionally, by incorporating a downstream boundary segmentation detection tool, the accuracy of SCNA boundaries was further improved. Here, we report an accurate, sensitive and easy to use tool in detecting cancer-specific SCNAs using short-read sequence data. In addition to cancer, COPS can be used for any disease as long as sequence reads from both disease and normal samples from the same individual are available. An added boundary segmentation detection module makes COPS detected SCNA boundaries more specific for the samples studied. COPS is available at ftp://115.119.160.213 with username "cops" and password "cops".


Asunto(s)
Secuencia de Bases/genética , Variaciones en el Número de Copia de ADN/genética , Técnicas Genéticas , Neoplasias/genética , Programas Informáticos , Simulación por Computador , Humanos , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA