Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Blood ; 138(6): 480-485, 2021 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-34010413

RESUMEN

Congenital amegakaryocytic thrombocytopenia (CAMT) is a severe inherited thrombocytopenia due to loss-of-function mutations affecting the thrombopoietin (TPO) receptor, MPL. Here, we report a new homozygous MPL variant responsible for CAMT in 1 consanguineous family. The propositus and her sister presented with severe thrombocytopenia associated with mild anemia. Next-generation sequencing revealed the presence of a homozygous MPLR464G mutation resulting in a weak cell-surface expression of the receptor in platelets. In cell lines, we observed a defect in MPLR464G maturation associated with its retention in the endoplasmic reticulum. The low cell-surface expression of MPLR464G induced very limited signaling with TPO stimulation, leading to survival and reduced proliferation of cells. Overexpression of a myeloproliferative neoplasm-associated calreticulin (CALR) mutant did not rescue trafficking of MPLR464G to the cell surface and did not induce constitutive signaling. However, it unexpectedly restored a normal response to eltrombopag (ELT), but not to TPO. This effect was only partially mimicked by the purified recombinant CALR mutant protein. Finally, the endogenous CALR mutant was able to restore the megakaryocyte differentiation of patient CD34+ cells carrying MPLR464G in response to ELT.


Asunto(s)
Benzoatos/farmacología , Calreticulina , Síndromes Congénitos de Insuficiencia de la Médula Ósea , Hidrazinas/farmacología , Mutación Missense , Pirazoles/farmacología , Receptores de Trombopoyetina , Trombocitopenia , Adulto , Sustitución de Aminoácidos , Calreticulina/genética , Calreticulina/metabolismo , Niño , Preescolar , Síndromes Congénitos de Insuficiencia de la Médula Ósea/tratamiento farmacológico , Síndromes Congénitos de Insuficiencia de la Médula Ósea/genética , Síndromes Congénitos de Insuficiencia de la Médula Ósea/metabolismo , Síndromes Congénitos de Insuficiencia de la Médula Ósea/patología , Femenino , Células HEK293 , Homocigoto , Humanos , Lactante , Masculino , Receptores de Trombopoyetina/genética , Receptores de Trombopoyetina/metabolismo , Trombocitopenia/tratamiento farmacológico , Trombocitopenia/genética , Trombocitopenia/metabolismo , Trombocitopenia/patología
2.
Blood ; 138(17): 1603-1614, 2021 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-34115825

RESUMEN

EZH2, the enzymatic component of PRC2, has been identified as a key factor in hematopoiesis. EZH2 loss-of-function mutations have been found in myeloproliferative neoplasms, particularly in myelofibrosis, but the precise function of EZH2 in megakaryopoiesis is not fully delineated. Here, we show that EZH2 inhibition by small molecules and short hairpin RNA induces megakaryocyte (MK) commitment by accelerating lineage marker acquisition without change in proliferation. Later in differentiation, EZH2 inhibition blocks proliferation and polyploidization and decreases proplatelet formation. EZH2 inhibitors similarly reduce MK polyploidization and proplatelet formation in vitro and platelet levels in vivo in a JAK2V617F background. In transcriptome profiling, the defect in proplatelet formation was associated with an aberrant actin cytoskeleton regulation pathway, whereas polyploidization was associated with an inhibition of expression of genes involved in DNA replication and repair and an upregulation of cyclin-dependent kinase inhibitors, particularly CDKN1A and CDKN2D. The knockdown of CDKN1A and to a lesser extent CDKN2D could partially rescue the percentage of polyploid MKs. Moreover, H3K27me3 and EZH2 chromatin immunoprecipitation assays revealed that CDKN1A is a direct EZH2 target and CDKN2D expression is not directly regulated by EZH2, suggesting that EZH2 controls MK polyploidization directly through CDKN1A and indirectly through CDKN2D.


Asunto(s)
Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Megacariocitos/citología , Trombopoyesis , Animales , Plaquetas/citología , Plaquetas/metabolismo , Células Cultivadas , Proteína Potenciadora del Homólogo Zeste 2/genética , Humanos , Megacariocitos/metabolismo , Ratones , Interferencia de ARN , Transcriptoma
3.
Blood ; 138(22): 2231-2243, 2021 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-34407546

RESUMEN

Classical BCR-ABL-negative myeloproliferative neoplasms (MPNs) are clonal disorders of hematopoietic stem cells (HSCs) caused mainly by recurrent mutations in genes encoding JAK2 (JAK2), calreticulin (CALR), or the thrombopoietin receptor (MPL). Interferon α (IFNα) has demonstrated some efficacy in inducing molecular remission in MPNs. To determine factors that influence molecular response rate, we evaluated the long-term molecular efficacy of IFNα in patients with MPN by monitoring the fate of cells carrying driver mutations in a prospective observational and longitudinal study of 48 patients over more than 5 years. We measured the clonal architecture of early and late hematopoietic progenitors (84 845 measurements) and the global variant allele frequency in mature cells (409 measurements) several times per year. Using mathematical modeling and hierarchical Bayesian inference, we further inferred the dynamics of IFNα-targeted mutated HSCs. Our data support the hypothesis that IFNα targets JAK2V617F HSCs by inducing their exit from quiescence and differentiation into progenitors. Our observations indicate that treatment efficacy is higher in homozygous than heterozygous JAK2V617F HSCs and increases with high IFNα dose in heterozygous JAK2V617F HSCs. We also found that the molecular responses of CALRm HSCs to IFNα were heterogeneous, varying between type 1 and type 2 CALRm, and a high dose of IFNα correlates with worse outcomes. Our work indicates that the long-term molecular efficacy of IFNα implies an HSC exhaustion mechanism and depends on both the driver mutation type and IFNα dose.


Asunto(s)
Células Madre Hematopoyéticas/efectos de los fármacos , Factores Inmunológicos/uso terapéutico , Interferón-alfa/uso terapéutico , Mutación/efectos de los fármacos , Trastornos Mieloproliferativos/tratamiento farmacológico , Calreticulina/genética , Células Madre Hematopoyéticas/metabolismo , Células Madre Hematopoyéticas/patología , Humanos , Factores Inmunológicos/farmacología , Interferón-alfa/farmacología , Janus Quinasa 2/genética , Estudios Longitudinales , Trastornos Mieloproliferativos/genética , Trastornos Mieloproliferativos/patología , Estudios Prospectivos , Receptores de Trombopoyetina/genética , Células Tumorales Cultivadas
4.
Haematologica ; 108(8): 2130-2145, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-36794499

RESUMEN

Sustained ANKRD26 expression associated with germline ANKRD26 mutations causes thrombocytopenia 2 (THC2), an inherited platelet disorder associated with a predisposition to leukemia. Some patients also present with erythrocytosis and/or leukocytosis. Using multiple human-relevant in vitro models (cell lines, primary patients' cells and patient-derived induced pluripotent stem cells) we demonstrate for the first time that ANKRD26 is expressed during the early steps of erythroid, megakaryocyte and granulocyte differentiation, and is necessary for progenitor cell proliferation. As differentiation progresses, ANKRD26 expression is progressively silenced, to complete the cellular maturation of the three myeloid lineages. In primary cells, abnormal ANKRD26 expression in committed progenitors directly affects the proliferation/differentiation balance for the three cell types. We show that ANKRD26 interacts with and crucially modulates the activity of MPL, EPOR and G-CSFR, three homodimeric type I cytokine receptors that regulate blood cell production. Higher than normal levels of ANKRD26 prevent the receptor internalization that leads to increased signaling and cytokine hypersensitivity. These findings afford evidence how ANKRD26 overexpression or the absence of its silencing during differentiation is responsible for myeloid blood cell abnormalities in patients with THC2.


Asunto(s)
Leucemia , Receptores de Citocinas , Humanos , Citocinas , Hematopoyesis , Leucemia/patología , Diferenciación Celular , Péptidos y Proteínas de Señalización Intercelular
5.
Br J Haematol ; 198(1): 131-136, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35355248

RESUMEN

Myeloproliferative neoplasms (MPN) are mainly sporadic but inherited variants have been associated with higher risk development. Here, we identified an EPOR variant (EPORP488S ) in a large family diagnosed with JAK2V617F -positive polycythaemia vera (PV) or essential thrombocytosis (ET). We investigated its functional impact on JAK2V617F clonal amplification in patients and found that the variant allele fraction (VAF) was low in PV progenitors but increase strongly in mature cells. Moreover, we observed that EPORP488S alone induced a constitutive phosphorylation of STAT5 in cell lines or primary cells. Overall, this study points for searching inherited-risk alleles affecting the JAK2/STAT pathway in MPN.


Asunto(s)
Trastornos Mieloproliferativos , Policitemia Vera , Receptores de Eritropoyetina , Trombocitemia Esencial , Alelos , Mutación con Ganancia de Función , Humanos , Janus Quinasa 2/genética , Janus Quinasa 2/metabolismo , Mutación , Trastornos Mieloproliferativos/diagnóstico , Trastornos Mieloproliferativos/genética , Policitemia Vera/genética , Receptores de Eritropoyetina/genética , Trombocitemia Esencial/genética
6.
Blood ; 134(16): 1279-1288, 2019 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-31471375

RESUMEN

Filamins (FLNs) are large dimeric actin-binding proteins that regulate actin cytoskeleton remodeling. In addition, FLNs serve as scaffolds for signaling proteins, such as tyrosine kinases, GTPases, or phosphatases, as well as for adhesive receptors, such as integrins. Thus, they connect adhesive receptors to signaling pathways and to cytoskeleton. There are 3 isoforms of FLN (filamin a [FLNa], FLNb, FLNc) that originate from 3 homologous genes. FLNa has been the recent focus of attention because its mutations are responsible for a wide spectrum of defects called filaminopathies A, affecting brain (peri-ventricular nodular heterotopia), heart (valve defect), skeleton, gastrointestinal tract, and, more recently, the megakaryocytic lineage. This review will focus on the physiological and pathological roles of FLNa in platelets. Indeed, FLNa mutations alter platelet production from their bone marrow precursors, the megakaryocytes, yielding giant platelets in reduced numbers (macrothrombocytopenia). In platelets per se, FLNa mutations may lead to impaired αIIbß3 integrin activation or in contrast, increased αIIbß3 activation, potentially enhancing the risk of thrombosis. Experimental work delineating the interaction of FLNa with its platelet partners, including αIIbß3, the von Willebrand factor receptor GPIb-IX-V, the tyrosine kinase Syk, and the signaling pathway of the collagen receptor GPVI, will also be reviewed.


Asunto(s)
Plaquetas/metabolismo , Filaminas/metabolismo , Animales , Humanos , Megacariocitos/metabolismo
7.
Blood ; 133(16): 1778-1788, 2019 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-30602618

RESUMEN

Filamin A (FLNa) links the cell membrane with the cytoskeleton and is central in several cellular processes. Heterozygous mutations in the X-linked FLNA gene are associated with a large spectrum of conditions, including macrothrombocytopenia, called filaminopathies. Using an isogenic pluripotent stem cell model derived from patients, we show that the absence of the FLNa protein in megakaryocytes (MKs) leads to their incomplete maturation, particularly the inability to produce proplatelets. Reduction in proplatelet formation potential is associated with a defect in actomyosin contractility, which results from inappropriate RhoA activation. This dysregulated RhoA activation was observed when MKs were plated on fibrinogen but not on other matrices (fibronectin, vitronectin, collagen 1, and von Willebrand factor), strongly suggesting a role for FLNa/αIIbß3 interaction in the downregulation of RhoA activity. This was confirmed by experiments based on the overexpression of FLNa mutants deleted in the αIIbß3-binding domain and the RhoA-interacting domain, respectively. Finally, pharmacological inhibition of the RhoA-associated kinase ROCK1/2 restored a normal phenotype and proplatelet formation. Overall, this work suggests a new etiology for macrothrombocytopenia, in which increased RhoA activity is associated with disrupted FLNa/αIIbß3 interaction.


Asunto(s)
Filaminas/metabolismo , Complejo GPIIb-IIIa de Glicoproteína Plaquetaria/metabolismo , Trombocitopenia/etiología , Femenino , Fibrinógeno/metabolismo , Filaminas/genética , Humanos , Megacariocitos/química , Megacariocitos/patología , Mutación , Unión Proteica/fisiología , Quinasas Asociadas a rho/antagonistas & inhibidores , Proteína de Unión al GTP rhoA/metabolismo
8.
Platelets ; 31(6): 707-716, 2020 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-31544577

RESUMEN

Mammal megakaryocytes (MK) undergo polyploidization during their differentiation. This process leads to a marked increase in the MK size and of their cytoplasm. Contrary to division by classical mitosis, ploidization allows an economical manner to produce platelets as they arise from the fragmentation of the MK cytoplasm. The platelet production in vivo correlates to the entire MK cytoplasm mass that depends both upon the number of MKs and their size. Polyploidization occurs by several rounds of DNA replication with at the end of each round an aborted mitosis at late phase of cytokinesis. As there is also a defect in karyokinesis, MKs are giant cells with a single polylobulated nucleus with a 2xN ploidy. However, polyploidization per se does not increase platelet production because it requires a parallel development of MK organelles such as mitochondria, granules and the demarcation membrane system. MK polyploidization is regulated by extrinsic factors, more particularly by thrombopoietin (TPO), which during a platelet stress increases first polyploidization before enhancing the MK number and by transcription factors such as RUNX1, GATA1, and FLI1 that regulate MK differentiation explaining why polyploidization and cytoplasmic maturation are intermingled. MK polyploidization is ontogenically regulated and is markedly altered in malignant myeloid disorders such as acute megakaryoblastic leukemia and myeloproliferative disorders as well as in hereditary thrombocytopenia, more particularly those involving transcription factors or signaling pathways. In addition, MKs arising from progenitors in vitro have a much lower ploidy in vitro than in vivo leading to a low yield of platelet production in vitro. Thus, it is tempting to find approaches to increase MK polyploidization in vitro. However, these approaches require molecules that are able to simultaneously increase MK polyploidization and to induce terminal differentiation. Here, we will focus on the regulation by extrinsic and intrinsic factors of MK polyploidization during development and pathological conditions.


Asunto(s)
Plaquetas/metabolismo , Megacariocitos/metabolismo , Animales , Diferenciación Celular , Humanos
9.
Haematologica ; 104(6): 1244-1255, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30545930

RESUMEN

Germline RUNX1 mutations lead to thrombocytopenia and platelet dysfunction in familial platelet disorder with predisposition to acute myelogenous leukemia (AML). Multiple aspects of platelet function are impaired in these patients, associated with altered expression of genes regulated by RUNX1 We aimed to identify RUNX1-targets involved in platelet function by combining transcriptome analysis of patient and shRUNX1-transduced megakaryocytes (MK). Down-regulated genes included TREM-like transcript (TLT)-1 (TREML1) and the integrin subunit alpha (α)-2 (ITGA2) of collagen receptor α2-beta (ß)-1, which are involved in platelet aggregation and adhesion, respectively. RUNX1 binding to regions enriched for H3K27Ac marks was demonstrated for both genes using chromatin immunoprecipitation. Cloning of these regions upstream of the respective promoters in lentivirus allowing mCherry reporter expression showed that RUNX1 positively regulates TREML1 and ITGA2, and this regulation was abrogated after deletion of RUNX1 sites. TLT-1 content was reduced in patient MK and platelets. A blocking anti-TLT-1 antibody was able to block aggregation of normal but not patient platelets, whereas recombinant soluble TLT-1 potentiated fibrinogen binding to patient platelets, pointing to a role for TLT-1 deficiency in the platelet function defect. Low levels of α2 integrin subunit were demonstrated in patient platelets and MK, coupled with reduced platelet and MK adhesion to collagen, both under static and flow conditions. In conclusion, we show that gene expression profiling of RUNX1 knock-down or mutated MK provides a suitable approach to identify novel RUNX1 targets, among which downregulation of TREML1 and ITGA2 clearly contribute to the platelet phenotype of familial platelet disorder with predisposition to AML.


Asunto(s)
Trastornos de las Plaquetas Sanguíneas/genética , Trastornos de las Plaquetas Sanguíneas/metabolismo , Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo , Regulación de la Expresión Génica , Integrina alfa2/genética , Leucemia Mieloide Aguda/etiología , Receptores Inmunológicos/genética , Trastornos de las Plaquetas Sanguíneas/sangre , Plaquetas/metabolismo , Susceptibilidad a Enfermedades , Perfilación de la Expresión Génica , Humanos , Leucemia Mieloide Aguda/diagnóstico , Megacariocitos/metabolismo , Mutación , Agregación Plaquetaria , Pruebas de Función Plaquetaria , Unión Proteica
10.
Blood ; 138(14): 1199-1200, 2021 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-34618001

Asunto(s)
Megacariocitos
11.
Blood ; 128(26): 3137-3145, 2016 12 29.
Artículo en Inglés | MEDLINE | ID: mdl-27737892

RESUMEN

Megakaryocyte polyploidy is characterized by cytokinesis failure resulting from defects in contractile forces at the cleavage furrow. Although immature megakaryocytes express 2 nonmuscle myosin II isoforms (MYH9 [NMIIA] and MYH10 [NMIIB]), only NMIIB localizes at the cleavage furrow, and its subsequent absence contributes to polyploidy. In this study, we tried to understand why the abundant NMIIA does not localize at the furrow by focusing on the RhoA/ROCK pathway that has a low activity in polyploid megakaryocytes. We observed that under low RhoA activity, NMII isoforms presented different activity that determined their localization. Inhibition of RhoA/ROCK signaling abolished the localization of NMIIB, whereas constitutively active RhoA induced NMIIA at the cleavage furrow. Thus, although high RhoA activity favored the localization of both the isoforms, only NMIIB could localize at the furrow at low RhoA activity. This was further confirmed in erythroblasts that have a higher basal RhoA activity than megakaryocytes and express both NMIIA and NMIIB at the cleavage furrow. Decreased RhoA activity in erythroblasts abolished localization of NMIIA but not of NMIIB from the furrow. This differential localization was related to differences in actin turnover. Megakaryocytes had a higher actin turnover compared with erythroblasts. Strikingly, inhibition of actin polymerization was found to be sufficient to recapitulate the effects of inhibition of RhoA/ROCK pathway on NMII isoform localization; thus, cytokinesis failure in megakaryocytes is the consequence of both the absence of NMIIB and a low RhoA activity that impairs NMIIA localization at the cleavage furrow through increased actin turnover.


Asunto(s)
Citocinesis , Megacariocitos/citología , Megacariocitos/metabolismo , Miosina Tipo IIA no Muscular/metabolismo , Miosina Tipo IIB no Muscular/metabolismo , Actinas/metabolismo , Eritrocitos/citología , Humanos , Cadenas Ligeras de Miosina/metabolismo , Fosforilación , Polimerizacion , Isoformas de Proteínas/metabolismo , Transporte de Proteínas , Transducción de Señal , Quinasas Asociadas a rho/metabolismo , Proteína de Unión al GTP rhoA/metabolismo
12.
Blood ; 127(10): 1317-24, 2016 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-26608331

RESUMEN

Frameshift mutations in the calreticulin (CALR) gene are seen in about 30% of essential thrombocythemia and myelofibrosis patients. To address the contribution of the CALR mutants to the pathogenesis of myeloproliferative neoplasms, we engrafted lethally irradiated recipient mice with bone marrow cells transduced with retroviruses expressing these mutants. In contrast to wild-type CALR, CALRdel52 (type I) and, to a lesser extent, CALRins5 (type II) induced thrombocytosis due to a megakaryocyte (MK) hyperplasia. Disease was transplantable into secondary recipients. After 6 months, CALRdel52-, in contrast to rare CALRins5-, transduced mice developed a myelofibrosis associated with a splenomegaly and a marked osteosclerosis. Monitoring of virus-transduced populations indicated that CALRdel52 leads to expansion at earlier stages of hematopoiesis than CALRins5. However, both mutants still specifically amplified the MK lineage and platelet production. Moreover, a mutant deleted of the entire exon 9 (CALRdelex9) did not induce a disease, suggesting that the oncogenic property of CALR mutants was related to the new C-terminus peptide. To understand how the CALR mutants target the MK lineage, we used a cell-line model and demonstrated that the CALR mutants, but not CALRdelex9, specifically activate the thrombopoietin (TPO) receptor (MPL) to induce constitutive activation of Janus kinase 2 and signal transducer and activator of transcription 5/3/1. We confirmed in c-mpl- and tpo-deficient mice that expression of Mpl, but not of Tpo, was essential for the CALR mutants to induce thrombocytosis in vivo, although Tpo contributes to disease penetrance. Thus, CALR mutants are sufficient to induce thrombocytosis through MPL activation.


Asunto(s)
Calreticulina/metabolismo , Mutación INDEL , Megacariocitos/metabolismo , Mielofibrosis Primaria/metabolismo , Receptores de Trombopoyetina/metabolismo , Trombocitosis/metabolismo , Animales , Calreticulina/genética , Mutación del Sistema de Lectura , Janus Quinasa 2/genética , Janus Quinasa 2/metabolismo , Megacariocitos/patología , Ratones , Ratones Mutantes , Mielofibrosis Primaria/etiología , Mielofibrosis Primaria/genética , Mielofibrosis Primaria/patología , Receptores de Trombopoyetina/genética , Trombocitosis/complicaciones , Trombocitosis/genética , Trombocitosis/patología
13.
Blood ; 128(26): 3146-3158, 2016 12 29.
Artículo en Inglés | MEDLINE | ID: mdl-28034873

RESUMEN

The mechanisms behind the hereditary thrombocytosis induced by the thrombopoietin (THPO) receptor MPL P106L mutant remain unknown. A complete trafficking defect to the cell surface has been reported, suggesting either weak constitutive activity or nonconventional THPO-dependent mechanisms. Here, we report that the thrombocytosis phenotype induced by MPL P106L belongs to the paradoxical group, where low MPL levels on platelets and mature megakaryocytes (MKs) lead to high serum THPO levels, whereas weak but not absent MPL cell-surface localization in earlier MK progenitors allows response to THPO by signaling and amplification of the platelet lineage. MK progenitors from patients showed no spontaneous growth and responded to THPO, and MKs expressed MPL on their cell surface at low levels, whereas their platelets did not respond to THPO. Transduction of MPL P106L in CD34+ cells showed that this receptor was more efficiently localized at the cell surface on immature than on mature MKs, explaining a proliferative response to THPO of immature cells and a defect in THPO clearance in mature cells. In a retroviral mouse model performed in Mpl-/- mice, MPL P106L could induce a thrombocytosis phenotype with high circulating THPO levels. Furthermore, we could select THPO-dependent cell lines with more cell-surface MPL P106L localization that was detected by flow cytometry and [125I]-THPO binding. Altogether, these results demonstrate that MPL P106L is a receptor with an incomplete defect in trafficking, which induces a low but not absent localization of the receptor on cell surface and a response to THPO in immature MK cells.


Asunto(s)
Membrana Celular/metabolismo , Mutación/genética , Receptores de Trombopoyetina/genética , Trombocitosis/genética , Trombocitosis/patología , Animales , Línea Celular , Modelos Animales de Enfermedad , Estrés del Retículo Endoplásmico , Familia , Femenino , Humanos , Masculino , Megacariocitos/metabolismo , Ratones , Linaje , Transporte de Proteínas , Receptores de Trombopoyetina/metabolismo , Retroviridae/metabolismo , Transducción Genética
14.
Blood ; 127(10): 1325-35, 2016 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-26668133

RESUMEN

Mutations in the calreticulin gene (CALR) represented by deletions and insertions in exon 9 inducing a -1/+2 frameshift are associated with a significant fraction of myeloproliferative neoplasms (MPNs). The mechanisms by which CALR mutants induce MPN are unknown. Here, we show by transcriptional, proliferation, biochemical, and primary cell assays that the pathogenic CALR mutants specifically activate the thrombopoietin receptor (TpoR/MPL). No activation is detected with a battery of type I and II cytokine receptors, except granulocyte colony-stimulating factor receptor, which supported only transient and weak activation. CALR mutants induce ligand-independent activation of JAK2/STAT/phosphatydylinositol-3'-kinase (PI3-K) and mitogen-activated protein (MAP) kinase pathways via TpoR, and autonomous growth in Ba/F3 cells. In these transformed cells, no synergy is observed between JAK2 and PI3-K inhibitors in inhibiting cytokine-independent proliferation, thus showing a major difference from JAK2V617F cells where such synergy is strong. TpoR activation was dependent on its extracellular domain and its N-glycosylation, especially at N117. The glycan binding site and the novel C-terminal tail of the mutant CALR proteins were required for TpoR activation. A soluble form of TpoR was able to prevent activation of full-length TpoR provided that it was N-glycosylated. By confocal microscopy and subcellular fractionation, CALR mutants exhibit different intracellular localization from that of wild-type CALR. Finally, knocking down either MPL/TpoR or JAK2 in megakaryocytic progenitors from patients carrying CALR mutations inhibited cytokine-independent megakaryocytic colony formation. Taken together, our study provides a novel signaling paradigm, whereby a mutated chaperone constitutively activates cytokine receptor signaling.


Asunto(s)
Calreticulina/metabolismo , Neoplasias Hematológicas/metabolismo , Proteínas con Dominio LIM/metabolismo , Proteínas Musculares/metabolismo , Mutación , Trastornos Mieloproliferativos/metabolismo , Proteínas de Neoplasias/metabolismo , Receptores de Trombopoyetina/metabolismo , Animales , Calreticulina/genética , Línea Celular Tumoral , Glicosilación , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/patología , Janus Quinasa 2/genética , Janus Quinasa 2/metabolismo , Proteínas con Dominio LIM/genética , Ratones , Proteínas Musculares/genética , Trastornos Mieloproliferativos/genética , Trastornos Mieloproliferativos/patología , Proteínas de Neoplasias/genética , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Fosforilación/genética , Transporte de Proteínas/genética , Receptores de Trombopoyetina/genética , Factores de Transcripción STAT/genética , Factores de Transcripción STAT/metabolismo , Transducción de Señal/genética
15.
Blood ; 127(3): 333-42, 2016 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-26450985

RESUMEN

Mutations in signaling molecules of the cytokine receptor axis play a central role in myeloproliferative neoplasm (MPN) pathogenesis. Polycythemia vera is mainly related to JAK2 mutations, whereas a wider mutational spectrum is detected in essential thrombocythemia (ET) with mutations in JAK2, the thrombopoietin (TPO) receptor (MPL), and the calreticulin (CALR) genes. Here, we studied the mutational profile of 17 ET patients negative for JAK2V617F, MPLW515K/L, and CALR mutations, using whole-exome sequencing and next-generation sequencing (NGS) targeted on JAK2 and MPL. We found several signaling mutations including JAK2V617F at very low allele frequency, 1 homozygous SH2B3 mutation, 1 MPLS505N, 1 MPLW515R, and 2 MPLS204P mutations. In the remaining patients, 4 presented a clonal and 7 a polyclonal hematopoiesis, suggesting that certain triple-negative ETs are not MPNs. NGS on 26 additional triple-negative ETs detected only 1 MPLY591N mutation. Functional studies on MPLS204P and MPLY591N revealed that they are weak gain-of-function mutants increasing MPL signaling and conferring either TPO hypersensitivity or independence to expressing cells, but with a low efficiency. Further studies should be performed to precisely determine the frequency of MPLS204 and MPLY591 mutants in a bigger cohort of MPN.


Asunto(s)
Mutación , Receptores de Trombopoyetina/genética , Trombocitemia Esencial/genética , Sustitución de Aminoácidos , Línea Celular , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Codón , Estudios de Cohortes , Hibridación Genómica Comparativa , Citocinas/farmacología , Análisis Mutacional de ADN , Exoma , Genotipo , Granulocitos/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Janus Quinasa 2/genética , Transporte de Proteínas , Receptores de Trombopoyetina/metabolismo , Trombocitemia Esencial/metabolismo
16.
Haematologica ; 103(4): 575-586, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29269524

RESUMEN

Primary familial and congenital polycythemia is characterized by erythropoietin hypersensitivity of erythroid progenitors due to germline nonsense or frameshift mutations in the erythropoietin receptor gene. All mutations so far described lead to the truncation of the C-terminal receptor sequence that contains negative regulatory domains. Their removal is presented as sufficient to cause the erythropoietin hypersensitivity phenotype. Here we provide evidence for a new mechanism whereby the presence of novel sequences generated by frameshift mutations is required for the phenotype rather than just extensive truncation resulting from nonsense mutations. We show that the erythropoietin hypersensitivity induced by a new erythropoietin receptor mutant, p.Gln434Profs*11, could not be explained by the loss of negative signaling and of the internalization domains, but rather by the appearance of a new C-terminal tail. The latter, by increasing erythropoietin receptor dimerization, stability and cell-surface localization, causes pre-activation of erythropoietin receptor and JAK2, constitutive signaling and hypersensitivity to erythropoietin. Similar results were obtained with another mutant, p.Pro438Metfs*6, which shares the same last five amino acid residues (MDTVP) with erythropoietin receptor p.Gln434Profs*11, confirming the involvement of the new peptide sequence in the erythropoietin hypersensitivity phenotype. These results suggest a new mechanism that might be common to erythropoietin receptor frameshift mutations. In summary, we show that primary familial and congenital polycythemia is more complex than expected since distinct mechanisms are involved in the erythropoietin hypersensitivity phenotype, according to the type of erythropoietin receptor mutation.


Asunto(s)
Mutación de Línea Germinal , Policitemia/etiología , Receptores de Eritropoyetina/genética , Secuencia de Aminoácidos , Animales , Línea Celular , Eritropoyetina/farmacología , Humanos , Ratones , Proteínas Mutantes , Policitemia/genética , Multimerización de Proteína/genética , Estabilidad Proteica , Receptores de Eritropoyetina/metabolismo
17.
Am J Hematol ; 93(2): 195-204, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29090484

RESUMEN

Rare gain-of-function mutations within the ITGA2B or ITGB3 genes have been recognized to cause macrothrombocytopenia (MTP). Here we report three new families with autosomal dominant (AD) MTP, two harboring the same mutation of ITGA2B, αIIbR995W, and a third family with an ITGB3 mutation, ß3D723H. In silico analysis shows how the two mutated amino acids directly modify the salt bridge linking the intra-cytoplasmic part of αIIb to ß3 of the integrin αIIbß3. For all affected patients, the bleeding syndrome and MTP was mild to moderate. Platelet aggregation tended to be reduced but not absent. Electron microscopy associated with a morphometric analysis revealed large round platelets; a feature being the presence of abnormal large α-granules with some giant forms showing signs of fusion. Analysis of the maturation and development of megakaryocytes reveal no defect in their early maturation but abnormal proplatelet formation was observed with increased size of the tips. Interestingly, this study revealed that in addition to the classical phenotype of patients with αIIbß3 intracytoplasmic mutations there is an abnormal maturation of α-granules. It is now necessary to determine if this feature is a characteristic of all mutations disturbing the αIIb R995/ß3 D723 salt bridge.


Asunto(s)
Gránulos Citoplasmáticos/patología , Integrina alfa2/genética , Integrina beta3/genética , Trombocitopenia/etiología , Plaquetas/ultraestructura , Simulación por Computador , Familia , Humanos , Megacariocitos , Agregación Plaquetaria , Complejo GPIIb-IIIa de Glicoproteína Plaquetaria/química
18.
J Cell Mol Med ; 21(6): 1237-1242, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-27997762

RESUMEN

Familial platelet disorder with predisposition to acute myeloid leukaemia (FPD/AML) is characterized by germline RUNX1 mutations, thrombocytopaenia, platelet dysfunction and a risk of developing acute myeloid and in rare cases lymphoid T leukaemia. Here, we focus on a case of a man with a familial history of RUNX1R174Q mutation who developed at the age of 42 years a T2-ALL and, 2 years after remission, an AML-M0. Both AML-M0 and T2-ALL blast populations demonstrated a loss of 1p36.32-23 and 17q11.2 regions as well as other small deletions, clonal rearrangements of both TCRγ and TCRδ and a presence of 18 variants at a frequency of more than 40%. Additional variants were identified only in T2-ALL or in AML-M0 evoking the existence of a common original clone, which gave rise to subclonal populations. Next generation sequencing (NGS) performed on peripheral blood-derived CD34+ cells 5 years prior to T2-ALL development revealed only the missense TET2P1962T mutation at a frequency of 1%, which increases to more than 40% in fully transformed leukaemic T2-ALL and AML-M0 clones. This result suggests that TET2P1962T mutation in association with germline RUNX1R174Q mutation leads to amplification of a haematopoietic clone susceptible to acquire other transforming alterations.


Asunto(s)
Trastornos de las Plaquetas Sanguíneas/genética , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Proteínas de Unión al ADN/genética , Leucemia Mieloide Aguda/genética , Proteínas Proto-Oncogénicas/genética , Adulto , Antígenos CD34/genética , Trastornos de las Plaquetas Sanguíneas/complicaciones , Trastornos de las Plaquetas Sanguíneas/patología , Plaquetas/patología , Dioxigenasas , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Leucemia Mieloide Aguda/complicaciones , Leucemia Mieloide Aguda/patología , Masculino
19.
Blood ; 125(6): 930-40, 2015 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-25490895

RESUMEN

To explore how RUNX1 mutations predispose to leukemia, we generated induced pluripotent stem cells (iPSCs) from 2 pedigrees with germline RUNX1 mutations. The first, carrying a missense R174Q mutation, which acts as a dominant-negative mutant, is associated with thrombocytopenia and leukemia, and the second, carrying a monoallelic gene deletion inducing a haploinsufficiency, presents only as thrombocytopenia. Hematopoietic differentiation of these iPSC clones demonstrated profound defects in erythropoiesis and megakaryopoiesis and deregulated expression of RUNX1 targets. iPSC clones from patients with the R174Q mutation specifically generated an increased amount of granulomonocytes, a phenotype reproduced by an 80% RUNX1 knockdown in the H9 human embryonic stem cell line, and a genomic instability. This phenotype, found only with a lower dosage of RUNX1, may account for development of leukemia in patients. Altogether, RUNX1 dosage could explain the differential phenotype according to RUNX1 mutations, with a haploinsufficiency leading to thrombocytopenia alone in a majority of cases whereas a more complete gene deletion predisposes to leukemia.


Asunto(s)
Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Hematopoyesis , Leucemia/genética , Mutación , Trombocitopenia/genética , Línea Celular , Células Cultivadas , Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo , Eliminación de Gen , Predisposición Genética a la Enfermedad , Inestabilidad Genómica , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/patología , Leucemia/metabolismo , Leucemia/patología , Datos de Secuencia Molecular , Mutación Missense , Trombocitopenia/metabolismo , Trombocitopenia/patología
20.
Haematologica ; 102(2): 282-294, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27663637

RESUMEN

Variants in ETV6, which encodes a transcription repressor of the E26 transformation-specific family, have recently been reported to be responsible for inherited thrombocytopenia and hematologic malignancy. We sequenced the DNA from cases with unexplained dominant thrombocytopenia and identified six likely pathogenic variants in ETV6, of which five are novel. We observed low repressive activity of all tested ETV6 variants, and variants located in the E26 transformation-specific binding domain (encoding p.A377T, p.Y401N) led to reduced binding to corepressors. We also observed a large expansion of megakaryocyte colony-forming units derived from variant carriers and reduced proplatelet formation with abnormal cytoskeletal organization. The defect in proplatelet formation was also observed in control CD34+ cell-derived megakaryocytes transduced with lentiviral particles encoding mutant ETV6. Reduced expression levels of key regulators of the actin cytoskeleton CDC42 and RHOA were measured. Moreover, changes in the actin structures are typically accompanied by a rounder platelet shape with a highly heterogeneous size, decreased platelet arachidonic response, and spreading and retarded clot retraction in ETV6 deficient platelets. Elevated numbers of circulating CD34+ cells were found in p.P214L and p.Y401N carriers, and two patients from different families suffered from refractory anemia with excess blasts, while one patient from a third family was successfully treated for acute myeloid leukemia. Overall, our study provides novel insights into the role of ETV6 as a driver of cytoskeletal regulatory gene expression during platelet production, and the impact of variants resulting in platelets with altered size, shape and function and potentially also in changes in circulating progenitor levels.


Asunto(s)
Plaquetas/metabolismo , Mutación de Línea Germinal , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Proteínas Proto-Oncogénicas c-ets/genética , Proteínas Represoras/genética , Trombopoyesis/genética , Antígenos CD34/metabolismo , Recuento de Células Sanguíneas , Diferenciación Celular , Familia , Femenino , Regulación de la Expresión Génica , Genotipo , Humanos , Hiperplasia , Masculino , Megacariocitos/citología , Megacariocitos/metabolismo , Megacariocitos/patología , Linaje , Fenotipo , Recuento de Plaquetas , Proteínas Proto-Oncogénicas c-ets/metabolismo , Proteínas Represoras/metabolismo , Transcripción Genética , Proteína ETS de Variante de Translocación 6
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA